These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34166532)

  • 21. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities.
    Mohamad R; Maynaud G; Le Quéré A; Vidal C; Klonowska A; Yashiro E; Cleyet-Marel JC; Brunel B
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27793823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tripartite mutualism: facilitation or trade-offs between rhizobial and mycorrhizal symbionts of legume hosts.
    Ossler JN; Zielinski CA; Heath KD
    Am J Bot; 2015 Aug; 102(8):1332-41. PubMed ID: 26290556
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutualistic rhizobia reduce plant diversity and alter community composition.
    Keller KR
    Oecologia; 2014 Dec; 176(4):1101-9. PubMed ID: 25245262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitrogen addition does not influence pre-infection partner choice in the legume-rhizobium symbiosis.
    Grillo MA; Stinchcombe JR; Heath KD
    Am J Bot; 2016 Oct; 103(10):1763-1770. PubMed ID: 27671532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Legumes Modulate Allocation to Rhizobial Nitrogen Fixation in Response to Factorial Light and Nitrogen Manipulation.
    Friel CA; Friesen ML
    Front Plant Sci; 2019; 10():1316. PubMed ID: 31749816
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of plant root symbionts on performance of native woody species in competition with an invasive grass in multispecies microcosms.
    Birnbaum C; Morald TK; Tibbett M; Bennett RG; Standish RJ
    Ecol Evol; 2018 Sep; 8(17):8652-8664. PubMed ID: 30271534
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO
    Wei X; Reich PB; Hobbie SE
    Glob Chang Biol; 2019 Jul; 25(7):2396-2409. PubMed ID: 30932274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume.
    Larimer AL; Clay K; Bever JD
    Ecology; 2014 Apr; 95(4):1045-54. PubMed ID: 24933822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolutionary dynamics of nitrogen fixation in the legume-rhizobia symbiosis.
    Fujita H; Aoki S; Kawaguchi M
    PLoS One; 2014; 9(4):e93670. PubMed ID: 24691447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Legume Sanctions and the Evolution of Symbiotic Cooperation by Rhizobia.
    Denison RF
    Am Nat; 2000 Dec; 156(6):567-576. PubMed ID: 29592542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated.
    Wolf AA; Funk JL; Menge DN
    New Phytol; 2017 Jan; 213(2):690-699. PubMed ID: 27859292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections.
    Regus JU; Quides KW; O'Neill MR; Suzuki R; Savory EA; Chang JH; Sachs JL
    Am J Bot; 2017 Sep; 104(9):1299-1312. PubMed ID: 29885243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of microbial interactions on rhizobial fitness.
    Granada Agudelo M; Ruiz B; Capela D; Remigi P
    Front Plant Sci; 2023; 14():1277262. PubMed ID: 37877089
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes.
    Burghardt LT; diCenzo GC
    Curr Opin Microbiol; 2023 Apr; 72():102281. PubMed ID: 36848712
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-species relationships in legume roots: From pairwise legume-symbiont interactions to the plant - microbiome - soil continuum.
    Tsiknia M; Tsikou D; Papadopoulou KK; Ehaliotis C
    FEMS Microbiol Ecol; 2021 Feb; 97(2):. PubMed ID: 33155054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The biodiversity of beneficial microbe-host mutualism: the case of rhizobia.
    Lindström K; Murwira M; Willems A; Altier N
    Res Microbiol; 2010; 161(6):453-63. PubMed ID: 20685242
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation systems in symbiotic nitrogen-fixing bacteria and their role in bacterial adaptation to various environmental stresses.
    Lipa P; Janczarek M
    PeerJ; 2020; 8():e8466. PubMed ID: 32095335
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of Soil Rhizobia Abundance on Interactions between a Vector, Pathogen, and Legume Plant Host.
    Malhotra P; Basu S; Lee BW; Oeller L; Crowder DW
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symbiosis specificity in the legume: rhizobial mutualism.
    Wang D; Yang S; Tang F; Zhu H
    Cell Microbiol; 2012 Mar; 14(3):334-42. PubMed ID: 22168434
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland.
    van der Heijden MG; Bakker R; Verwaal J; Scheublin TR; Rutten M; van Logtestijn R; Staehelin C
    FEMS Microbiol Ecol; 2006 May; 56(2):178-87. PubMed ID: 16629748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.