These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34166665)

  • 1. Evaluation of renewable pH-responsive starch-based flocculant on treating and recycling of highly saline textile effluents.
    Wang K; Ran T; Yu P; Chen L; Zhao J; Ahmad A; Ramzan N; Xu X; Xu Y; Shi Y
    Environ Res; 2021 Oct; 201():111489. PubMed ID: 34166665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater.
    Wu H; Liu Z; Li A; Yang H
    Chemosphere; 2017 May; 174():200-207. PubMed ID: 28167351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the starch-based flocculants on flocculation of hairwork wastewater.
    Du Q; Wei H; Li A; Yang H
    Sci Total Environ; 2017 Dec; 601-602():1628-1637. PubMed ID: 28609850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-responsive chitosan-based flocculant for precise dye flocculation control and the recycling of textile dyeing effluents.
    Wei T; Wu L; Yu F; Lv Y; Chen L; Shi Y; Dai B
    RSC Adv; 2018 Nov; 8(69):39334-39340. PubMed ID: 35558022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of structural effects on the flocculation performance of a co-graft starch-based flocculant.
    Liu Z; Wei H; Li A; Yang H
    Water Res; 2017 Jul; 118():160-166. PubMed ID: 28431348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-pressure UV-initiated synthesis of cationic starch-based flocculant with high flocculation performance.
    Wu Y; Jiang X; Ma J; Wen J; Liu S; Liu H; Zheng H
    Carbohydr Polym; 2021 Dec; 273():118379. PubMed ID: 34560931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residue-Free and Recyclable Starch-Based Flocculants for Dye Wastewater Flocculation.
    Gao Z; Ju B; Tang B; Ma W; Niu W; Zhang S
    Langmuir; 2024 Feb; 40(6):3231-3240. PubMed ID: 38297996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a modified biological flocculant in total nitrogen treatment of leather wastewater.
    Zhang Y; Yang Q; Gao H; Zhao Y; Tang X; Zhao C; Fang C
    Water Sci Technol; 2021 Jun; 83(12):2901-2910. PubMed ID: 34185687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient removal of phosphorus from turbid water using chemical sedimentation by FeCl
    Ren J; Li N; Wei H; Li A; Yang H
    Water Res; 2020 Mar; 170():115361. PubMed ID: 31816568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphoteric starch derivatives as reusable flocculant for heavy-metal removal.
    Wu L; Zhang X; Chen L; Zhang H; Li C; Lv Y; Xu Y; Jia X; Shi Y; Guo X
    RSC Adv; 2018 Jan; 8(3):1274-1280. PubMed ID: 35540895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic High Molecular Weight Lignin Polymer: A Flocculant for the Removal of Anionic Azo-Dyes from Simulated Wastewater.
    Wang S; Kong F; Fatehi P; Hou Q
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual functionality of a graft starch flocculant: Flocculation and antibacterial performance.
    Huang M; Liu Z; Li A; Yang H
    J Environ Manage; 2017 Jul; 196():63-71. PubMed ID: 28284139
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flocculation mechanism by a novel combined aluminum-ferrous-starch flocculant (CAFS).
    Lin Q; Pan H; Huang H; Liu G; Yin G
    Water Sci Technol; 2012; 65(12):2169-74. PubMed ID: 22643412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modified amylopectin based flocculant for the treatment of synthetic effluent and industrial wastewaters.
    Sarkar AK; Ghorai S; Patra AS; Mishra BK; Mandre NR; Pal S
    Int J Biol Macromol; 2015 Jan; 72():356-63. PubMed ID: 25159884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two starch-based flocculants with polyacrylamide for the simultaneous removal of phosphorus and turbidity from simulated and actual wastewater samples in combination with FeCl
    Hu P; Ren J; Hu X; Yang H
    Int J Biol Macromol; 2021 Jan; 167():223-232. PubMed ID: 33259840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of viscosity, basicity and organic content of composite flocculant on the decolorization performance and mechanism for reactive dyeing wastewater.
    Wang Y; Gao B; Yue Q; Wang Y
    J Environ Sci (China); 2011; 23(10):1626-33. PubMed ID: 22432257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the structural factors for the flocculation performance of a co-graft cationic starch-based flocculant.
    Hu P; Xi Z; Li Y; Li A; Yang H
    Chemosphere; 2020 Feb; 240():124866. PubMed ID: 31546191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch.
    Letelier-Gordo CO; Holdt SL; De Francisci D; Karakashev DB; Angelidaki I
    Bioresour Technol; 2014 Sep; 167():214-8. PubMed ID: 24983692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flocculation characteristics of polyacrylamide grafted cellulose from Phyllostachys heterocycla: An efficient and eco-friendly flocculant.
    Liu H; Yang X; Zhang Y; Zhu H; Yao J
    Water Res; 2014 Aug; 59():165-71. PubMed ID: 24793114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flocculation performance of lignin-based flocculant during reactive blue dye removal: comparison with commercial flocculants.
    Guo K; Gao B; Li R; Wang W; Yue Q; Wang Y
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2083-2095. PubMed ID: 29199367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.