These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34166865)

  • 1. Physiology, niche characteristics and extreme events: Current and future habitat suitability of a rhodolith-forming species in the Southwestern Atlantic.
    Koerich G; Costa GB; Sissini MN; Ortiz CL; Canever BF; Oliveira W; Tonkin JD; Horta PA
    Mar Environ Res; 2021 Jul; 169():105394. PubMed ID: 34166865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodolith primary and carbonate production in a changing ocean: The interplay of warming and nutrients.
    Schubert N; Salazar VW; Rich WA; Vivanco Bercovich M; Almeida Saá AC; Fadigas SD; Silva J; Horta PA
    Sci Total Environ; 2019 Aug; 676():455-468. PubMed ID: 31048175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast.
    Carvalho VF; Assis J; Serrão EA; Nunes JM; Anderson AB; Batista MB; Barufi JB; Silva J; Pereira SMB; Horta PA
    Mar Environ Res; 2020 Feb; 154():104827. PubMed ID: 31780097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Niche availability and habitat affinities of the red porgy Pagrus pagrus (Linnaeus, 1758): An important ecological player on the world's largest rhodolith beds.
    Anderson AB; Bernardes MB; Pinheiro HT; Guabiroba HC; Pimentel CR; Vilar CC; Gomes LEO; Bernardino AF; Delfino SDT; Giarrizzo T; Ferreira CEL; Joyeux JC
    J Fish Biol; 2022 Jul; 101(1):179-189. PubMed ID: 35538668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying maerl (rhodolith) habitat complexity along an environmental gradient at regional scale in the Northeast Atlantic.
    Jardim VL; Gauthier O; Toumi C; Grall J
    Mar Environ Res; 2022 Nov; 181():105768. PubMed ID: 36240648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C.Agardh.
    Britton D; Schmid M; Noisette F; Havenhand JN; Paine ER; McGraw CM; Revill AT; Virtue P; Nichols PD; Mundy CN; Hurd CL
    Glob Chang Biol; 2020 Jun; 26(6):3512-3524. PubMed ID: 32105368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change.
    Lima ARA; Baltazar-Soares M; Garrido S; Riveiro I; Carrera P; Piecho-Santos AM; Peck MA; Silva G
    Sci Total Environ; 2022 Jan; 804():150167. PubMed ID: 34798731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean.
    Cavalcanti GS; Gregoracci GB; dos Santos EO; Silveira CB; Meirelles PM; Longo L; Gotoh K; Nakamura S; Iida T; Sawabe T; Rezende CE; Francini-Filho RB; Moura RL; Amado-Filho GM; Thompson FL
    ISME J; 2014 Jan; 8(1):52-62. PubMed ID: 23985749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.
    de Carvalho RT; Salgado LT; Amado Filho GM; Leal RN; Werckmann J; Rossi AL; Campos APC; Karez CS; Farina M
    J Phycol; 2017 Jun; 53(3):642-651. PubMed ID: 28258584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodoliths holobionts in a changing ocean: host-microbes interactions mediate coralline algae resilience under ocean acidification.
    Cavalcanti GS; Shukla P; Morris M; Ribeiro B; Foley M; Doane MP; Thompson CC; Edwards MS; Dinsdale EA; Thompson FL
    BMC Genomics; 2018 Sep; 19(1):701. PubMed ID: 30249182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of rhodolith beds and their functional biodiversity characterisation using ROV images in the western Mediterranean Sea.
    Illa-López L; Cabrito A; de Juan S; Maynou F; Demestre M
    Sci Total Environ; 2023 Dec; 905():167270. PubMed ID: 37741380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in the potential distribution of bumble bees (Apidae: Bombus) in Mesoamerica under different climate change scenarios: Conservation implications.
    Martínez-López O; Koch JB; Martínez-Morales MA; Navarrete-Gutiérrez D; Enríquez E; Vandame R
    Glob Chang Biol; 2021 May; 27(9):1772-1787. PubMed ID: 33595918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proxies to detect hotspots of invertebrate biodiversity on rhodolith beds across the Southwestern Atlantic.
    Lino JB; Laurino IRA; Longo PADS; Santos CSG; Motta FDS; Francini-Filho RB; Pereira-Filho GH
    Mar Environ Res; 2024 Apr; 196():106431. PubMed ID: 38442590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forecasting distributional shifts of Patella spp. in the Northeast Atlantic Ocean, under climate change.
    Freitas D; Borges D; Arenas F; Pinto IS; Vale CG
    Mar Environ Res; 2023 Apr; 186():105945. PubMed ID: 36907078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of climate change on the current and future distribution of threatened species of the genus Lessingianthus (Vernonieae: Asteraceae) from the Brazilian Cerrado.
    Angulo MB; Via DO Pico G; Dematteis M
    An Acad Bras Cienc; 2021; 93(2):e20190796. PubMed ID: 34190841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projecting marine species range shifts from only temperature can mask climate vulnerability.
    McHenry J; Welch H; Lester SE; Saba V
    Glob Chang Biol; 2019 Dec; 25(12):4208-4221. PubMed ID: 31487434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem.
    Queirós AM; Fernandes JA; Faulwetter S; Nunes J; Rastrick SP; Mieszkowska N; Artioli Y; Yool A; Calosi P; Arvanitidis C; Findlay HS; Barange M; Cheung WW; Widdicombe S
    Glob Chang Biol; 2015 Jan; 21(1):130-43. PubMed ID: 25044416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic.
    Amado-Filho GM; Moura RL; Bastos AC; Salgado LT; Sumida PY; Guth AZ; Francini-Filho RB; Pereira-Filho GH; Abrantes DP; Brasileiro PS; Bahia RG; Leal RN; Kaufman L; Kleypas JA; Farina M; Thompson FL
    PLoS One; 2012; 7(4):e35171. PubMed ID: 22536356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining ecological niche models with experimental seed germination to estimate the effect of climate change on the distribution of endangered plant species in the Brazilian Cerrado.
    Ferreira RB; Parreira MR; de Arruda FV; Falcão MJA; de Freitas Mansano V; Nabout JC
    Environ Monit Assess; 2022 Mar; 194(4):283. PubMed ID: 35294661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of a canopy-forming alga along the Western Atlantic Ocean under global warming: The importance of depth range.
    Carneiro IM; Paiva PC; Bertocci I; Lorini ML; de Széchy MTM
    Mar Environ Res; 2023 Jun; 188():106013. PubMed ID: 37209442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.