These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 34166876)
1. In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system. He RW; Houtzager MMG; Jongeneel WP; Westerink RHS; Cassee FR Environ Int; 2021 Nov; 156():106718. PubMed ID: 34166876 [TBL] [Abstract][Full Text] [Related]
2. In vitro neurotoxicity screening of engine oil- and hydraulic fluid-derived aircraft cabin bleed-air contamination. Gerber LS; van Kleef RGDM; Fokkens P; Cassee FR; Westerink RH Neurotoxicology; 2023 May; 96():184-196. PubMed ID: 37120036 [TBL] [Abstract][Full Text] [Related]
3. Health consequences of exposure to aircraft contaminated air and fume events: a narrative review and medical protocol for the investigation of exposed aircrew and passengers. Burdon J; Budnik LT; Baur X; Hageman G; Howard CV; Roig J; Coxon L; Furlong CE; Gee D; Loraine T; Terry AV; Midavaine J; Petersen H; Bron D; Soskolne CL; Michaelis S Environ Health; 2023 May; 22(1):43. PubMed ID: 37194087 [TBL] [Abstract][Full Text] [Related]
4. The role of nanoparticles in bleed air in the etiology of Aerotoxic Syndrome: A review of cabin air-quality studies of 2003-2023. Hageman G; van Broekhuizen P; Nihom J J Occup Environ Hyg; 2024; 21(6):423-438. PubMed ID: 38593380 [TBL] [Abstract][Full Text] [Related]
5. Ultrafine particle levels measured on board short-haul commercial passenger jet aircraft. Michaelis S; Loraine T; Howard CV Environ Health; 2021 Aug; 20(1):89. PubMed ID: 34404396 [TBL] [Abstract][Full Text] [Related]
6. The role of carbon monoxide in aerotoxic syndrome. Hageman G; van Broekhuizen P; Nihom J Neurotoxicology; 2024 Jan; 100():107-116. PubMed ID: 38135191 [TBL] [Abstract][Full Text] [Related]
7. Occupational exposure of air crews to tricresyl phosphate isomers and organophosphate flame retardants after fume events. Schindler BK; Weiss T; Schütze A; Koslitz S; Broding HC; Bünger J; Brüning T Arch Toxicol; 2013 Apr; 87(4):645-8. PubMed ID: 23179756 [TBL] [Abstract][Full Text] [Related]
8. Occupational risk of organophosphates and other chemical and radiative exposure in the aircraft cabin: A systematic review. Hayes K; Megson D; Doyle A; O'Sullivan G Sci Total Environ; 2021 Nov; 796():148742. PubMed ID: 34375198 [TBL] [Abstract][Full Text] [Related]
9. Aerospace toxicology overview: aerial application and cabin air quality. Chaturvedi AK Rev Environ Contam Toxicol; 2011; 214():15-40. PubMed ID: 21913123 [TBL] [Abstract][Full Text] [Related]
10. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality. van Netten C; Leung V Arch Environ Health; 2001; 56(2):181-6. PubMed ID: 11339683 [TBL] [Abstract][Full Text] [Related]
11. Multi-elemental analysis of jet engine lubricating oils and hydraulic fluids and their implication in aircraft air quality incidents. van Netten C Sci Total Environ; 1999 May; 229(1-2):125-9. PubMed ID: 10418167 [TBL] [Abstract][Full Text] [Related]
12. Investigating the potential for transisomerisation of trycresyl phosphate with a palladium catalyst and its implications for aircraft cabin air quality. Megson D; Hajimirzaee S; Doyle A; Cannon F; Balouet JC Chemosphere; 2019 Jan; 215():532-534. PubMed ID: 30342398 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft. Shehadi M; Jones B; Hosni M Indoor Air; 2016 Jun; 26(3):478-88. PubMed ID: 25864418 [TBL] [Abstract][Full Text] [Related]
14. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants. Solbu K; Daae HL; Olsen R; Thorud S; Ellingsen DG; Lindgren T; Bakke B; Lundanes E; Molander P J Environ Monit; 2011 May; 13(5):1393-403. PubMed ID: 21399836 [TBL] [Abstract][Full Text] [Related]
15. Exposure to tri-o-cresyl phosphate detected in jet airplane passengers. Liyasova M; Li B; Schopfer LM; Nachon F; Masson P; Furlong CE; Lockridge O Toxicol Appl Pharmacol; 2011 Nov; 256(3):337-47. PubMed ID: 21723309 [TBL] [Abstract][Full Text] [Related]
16. Addendum to "In vitro hazard characterization of simulated aircraft cabin bleed-air contamination in lung models using an air-liquid interface (ALI) exposure system" [Environ. Int. 156 (2021) 106718]. He RW; Houtzager MMG; Jongeneel WP; Westerink RHS; Cassee FR Environ Int; 2022 Aug; 166():107365. PubMed ID: 37830878 [No Abstract] [Full Text] [Related]
17. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Antonini JM; Roberts JR; Stone S; Chen BT; Schwegler-Berry D; Chapman R; Zeidler-Erdely PC; Andrews RN; Frazer DG Arch Toxicol; 2011 May; 85(5):487-98. PubMed ID: 20924559 [TBL] [Abstract][Full Text] [Related]
18. [Aerotoxic syndrome: fact or fiction?]. de Graaf LJ; Hageman G; Gouders BC; Mulder MF Ned Tijdschr Geneeskd; 2014; 158():A6912. PubMed ID: 24713335 [TBL] [Abstract][Full Text] [Related]
19. Determination of tricresyl phosphate air contamination in aircraft. Denola G; Hanhela PJ; Mazurek W Ann Occup Hyg; 2011 Aug; 55(7):710-22. PubMed ID: 21730359 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the constituents of two jet engine lubricating oils and their volatile pyrolytic degradation products. van Netten C; Leung V Appl Occup Environ Hyg; 2000 Mar; 15(3):277-83. PubMed ID: 10701290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]