These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34167041)

  • 1. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of benzene/toluene/ethyl benzene/xylene (BTEX) via multiphase catalytic pyrolysis of hazardous waste polyethylene using low cost fly ash synthesized natural catalyst.
    Gaurh P; Pramanik H
    Waste Manag; 2018 Jul; 77():114-130. PubMed ID: 30008401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic pyrolysis of harmful plastic waste to alleviate environmental impacts.
    Yim H; Valizadeh S; Rhee GH; Jae J; Ali Khan M; Jeon BH; Nam H; Park YK
    Environ Pollut; 2024 Feb; 343():123198. PubMed ID: 38128713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influences and mechanisms of pyrolytic conditions on recycling BTX products from passenger car waste tires.
    Zheng D; Cheng J; Wang X; Yu G; Xu R; Dai C; Liu N; Wang N; Chen B
    Waste Manag; 2023 Sep; 169():196-207. PubMed ID: 37453307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From waste tire to high value-added chemicals: an analytical Py-GC/TOF-MS study.
    Wang ZC; Duan PG; Wang K
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72117-72125. PubMed ID: 34984613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes.
    Ahamed A; Liang L; Chan WP; Tan PCK; Yip NTX; Bobacka J; Veksha A; Yin K; Lisak G
    Environ Pollut; 2021 May; 276():116681. PubMed ID: 33611206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced mono-aromatics production by the CH
    Farooq A; Rhee GH; Shim H; Valizadeh B; Lee J; Khan M; Jeon BH; Jang SH; Choi YJ; Park YK
    Chemosphere; 2024 Mar; 351():141251. PubMed ID: 38253084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting effects of pyrolytic volatiles interaction in char to upgrade oil by swelling waste nylon-tire.
    Huang R; Ren Q; Zhang J; He L; Su S; Wang Y; Jiang L; Xu J; Hu S; Xiang J
    Waste Manag; 2023 Sep; 169():374-381. PubMed ID: 37527617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave catalytic co-pyrolysis of waste cooking oil and low-density polyethylene to produce monocyclic aromatic hydrocarbons: Effect of different catalysts and pyrolysis parameters.
    Zeng Y; Wang Y; Liu Y; Dai L; Wu Q; Xia M; Zhang S; Ke L; Zou R; Ruan R
    Sci Total Environ; 2022 Feb; 809():152182. PubMed ID: 34883177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On Fractioning the Tire Pyrolysis Oil in a Pilot-Scale Distillation Plant under Industrially Relevant Conditions.
    Martínez JD; Veses A; Callén MS; López JM; García T; Murillo R
    Energy Fuels; 2023 Feb; 37(4):2886-2896. PubMed ID: 36827211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis.
    Lee SB; Lee J; Tsang YF; Kim YM; Jae J; Jung SC; Park YK
    Environ Pollut; 2021 Aug; 283():117060. PubMed ID: 33852997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidised bed catalytic pyrolysis of scrap tyres: influence of catalyst:tyre ratio and catalyst temperature.
    Williams PT; Brindle AJ
    Waste Manag Res; 2002 Dec; 20(6):546-55. PubMed ID: 12549667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential Valorization of Waste Tires as Activated Carbon-Based Adsorbent for Organic Contaminants Removal.
    Frikha K; Limousy L; Pons Claret J; Vaulot C; Pérez KF; Garcia BC; Bennici S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis of scrap tyres with zeolite USY.
    Shen B; Wu C; Wang R; Guo B; Liang C
    J Hazard Mater; 2006 Sep; 137(2):1065-73. PubMed ID: 16704900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk.
    Li Z; Zhong Z; Zhang B; Wang W; Seufitelli GVS; Resende FLP
    Sci Total Environ; 2020 Feb; 703():134605. PubMed ID: 31731164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.