These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 34167061)
1. An innovative route for valorising iron and aluminium oxide rich industrial wastes: Recovery of multiple metals. Khanna R; Konyukhov YV; Ikram-Ul-Haq M; Burmistrov I; Cayumil R; Belov VA; Rogachev SO; Leybo DV; Mukherjee PS J Environ Manage; 2021 Oct; 295():113035. PubMed ID: 34167061 [TBL] [Abstract][Full Text] [Related]
2. The sensitive mobility of Cr in ashes studied by SiO Yang Z; Ning Y; Wang C; Yang S; Zhang W; Dähn R; Li Y Environ Pollut; 2023 Mar; 321():121091. PubMed ID: 36657511 [TBL] [Abstract][Full Text] [Related]
3. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations. Jacukowicz-Sobala I; Ociński D; Kociołek-Balawejder E Waste Manag Res; 2015 Jul; 33(7):612-29. PubMed ID: 26060197 [TBL] [Abstract][Full Text] [Related]
4. Assessing the chromium mobility in ashes through SiO Yang Z; Wang C; Li Y; Yang S; Zhang W; Li Y Chemosphere; 2020 Oct; 257():127112. PubMed ID: 32474150 [TBL] [Abstract][Full Text] [Related]
5. A novel silica alumina-based backfill material composed of coal refuse and fly ash. Yao Y; Sun H J Hazard Mater; 2012 Apr; 213-214():71-82. PubMed ID: 22336582 [TBL] [Abstract][Full Text] [Related]
6. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Li G; Liu M; Rao M; Jiang T; Zhuang J; Zhang Y J Hazard Mater; 2014 Sep; 280():774-80. PubMed ID: 25240647 [TBL] [Abstract][Full Text] [Related]
7. Development of iron oxide and titania treated fly ash based ceramic and its bioactivity. Sultana P; Das S; Bhattacharya A; Basu R; Nandy P Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1358-65. PubMed ID: 24364932 [TBL] [Abstract][Full Text] [Related]
8. Research and industrialization progress of recovering alumina from fly ash: A concise review. Ding J; Ma S; Shen S; Xie Z; Zheng S; Zhang Y Waste Manag; 2017 Feb; 60():375-387. PubMed ID: 27346594 [TBL] [Abstract][Full Text] [Related]
9. Hidden values in bauxite residue (red mud): recovery of metals. Liu Y; Naidu R Waste Manag; 2014 Dec; 34(12):2662-73. PubMed ID: 25269817 [TBL] [Abstract][Full Text] [Related]
10. Alkaline industrial wastes - Characteristics, environmental risks, and potential for mine waste management. Moyo A; Parbhakar-Fox A; Meffre S; Cooke DR Environ Pollut; 2023 Apr; 323():121292. PubMed ID: 36804887 [TBL] [Abstract][Full Text] [Related]
11. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Xie K; Hu H; Xu S; Chen T; Huang Y; Yang Y; Yang F; Yao H Waste Manag; 2020 Feb; 103():334-341. PubMed ID: 31923840 [TBL] [Abstract][Full Text] [Related]
12. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Zhang R; Zheng S; Ma S; Zhang Y J Hazard Mater; 2011 May; 189(3):827-35. PubMed ID: 21444152 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of 2'-deoxyguanosine hydroxylation and DNA damage by coal and oil fly ash in relation to particulate metal content and availability. Prahalad AK; Inmon J; Ghio AJ; Gallagher JE Chem Res Toxicol; 2000 Oct; 13(10):1011-9. PubMed ID: 11080050 [TBL] [Abstract][Full Text] [Related]
14. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste. Vichaphund S; Aht-Ong D; Sricharoenchaikul V; Atong D Environ Technol; 2014; 35(17-20):2254-61. PubMed ID: 25145178 [TBL] [Abstract][Full Text] [Related]
15. On the industrial symbiosis of alumina and iron/steel production: Suitability of ferroalumina as raw material in iron and steel making. Karamoutsos S; Tzevelekou T; Christogerou A; Grilla E; Gypakis A; Pérez Villarejo L; Mantzavinos D; Angelopoulos GN Waste Manag Res; 2021 Oct; 39(10):1270-1276. PubMed ID: 33594947 [TBL] [Abstract][Full Text] [Related]
16. Red mud recycling by Fe and Al recovery through the hydrometallurgy method: a collaborative strategy for aluminum and iron industry. Liu X; Zou Y; Geng R; Li B; Zhu T Environ Sci Pollut Res Int; 2023 Mar; 30(15):43377-43386. PubMed ID: 36656474 [TBL] [Abstract][Full Text] [Related]
17. Aluminum and iron leaching from power plant coal fly ash for preparation of polymeric aluminum ferric chloride. Zhang Y; Li M; Liu D; Hou X; Zou J; Ma X; Shang F; Wang Z Environ Technol; 2019 May; 40(12):1568-1575. PubMed ID: 29319418 [TBL] [Abstract][Full Text] [Related]
18. Producing a synthetic zeolite from secondary coal fly ash. Zhou C; Yan C; Zhou Q; Wang H; Luo W Environ Technol; 2016 Nov; 37(22):2916-23. PubMed ID: 27080358 [TBL] [Abstract][Full Text] [Related]
19. Synergistic utilization of industrial solid wastes: Extraction of valuable metals from tungsten leaching residue by photovoltaic sawing waste. Li M; Huang L; Chen W; Huang Z; Wang H; Liu C; Luo X; Barati M Waste Manag; 2024 Jul; 184():10-19. PubMed ID: 38788498 [TBL] [Abstract][Full Text] [Related]
20. Natural weathering in dry disposed ash dump: Insight from chemical, mineralogical and geochemical analysis of fresh and unsaturated drilled cores. Akinyemi SA; Akinlua A; Gitari WM; Khuse N; Eze P; Akinyeye RO; Petrik LF J Environ Manage; 2012 Jul; 102():96-107. PubMed ID: 22446137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]