These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34167291)

  • 1. Single-Entity Electrochemistry for Digital Biosensing at Ultralow Concentrations.
    Lemay SG; Moazzenzade T
    Anal Chem; 2021 Jul; 93(26):9023-9031. PubMed ID: 34167291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic electrochemistry at ultralow concentrations: the case for digital sensors.
    Moazzenzade T; Huskens J; Lemay SG
    Analyst; 2020 Feb; 145(3):750-758. PubMed ID: 31808469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical biosensors for environmental monitoring.
    Rishpon J
    Rev Environ Health; 2002; 17(3):219-47. PubMed ID: 12462484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing Nanoscale Electrochemistry in Small-Molecule Detection for Tackling Existing Limitations of Affinity-Based Label-Free Biosensing Applications.
    Lee DH; Lee WY; Kim J
    J Am Chem Soc; 2023 Aug; 145(32):17767-17778. PubMed ID: 37527497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Addressable Electrochemical Sensors toward Spatially Resolved Biosensing and Imaging Applications.
    Meng Y; Chen F; Wu C; Krause S; Wang J; Zhang DW
    ACS Sens; 2022 Jul; 7(7):1791-1807. PubMed ID: 35762514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous, real-time monitoring of cocaine in undiluted blood serum via a microfluidic, electrochemical aptamer-based sensor.
    Swensen JS; Xiao Y; Ferguson BS; Lubin AA; Lai RY; Heeger AJ; Plaxco KW; Soh HT
    J Am Chem Soc; 2009 Apr; 131(12):4262-6. PubMed ID: 19271708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical DNA sensors.
    Drummond TG; Hill MG; Barton JK
    Nat Biotechnol; 2003 Oct; 21(10):1192-9. PubMed ID: 14520405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures.
    Lubin AA; Plaxco KW
    Acc Chem Res; 2010 Apr; 43(4):496-505. PubMed ID: 20201486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunoassays based on electrochemical detection using microelectrode arrays.
    Dill K; Montgomery DD; Ghindilis AL; Schwarzkopf KR; Ragsdale SR; Oleinikov AV
    Biosens Bioelectron; 2004 Nov; 20(4):736-42. PubMed ID: 15522588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules.
    Cheng AK; Sen D; Yu HZ
    Bioelectrochemistry; 2009 Nov; 77(1):1-12. PubMed ID: 19473883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in single-impact electrochemistry for bacteria analysis.
    Smida H; Langlard A; Ameline D; Thobie-Gautier C; Boujtita M; Lebègue E
    Anal Bioanal Chem; 2023 Jul; 415(18):3717-3725. PubMed ID: 36754873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-molecule electrochemistry: present status and outlook.
    Lemay SG; Kang S; Mathwig K; Singh PS
    Acc Chem Res; 2013 Feb; 46(2):369-77. PubMed ID: 23270398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of biosensors for immunoassays.
    Bannister JV
    Ann Ist Super Sanita; 1991; 27(1):145-7. PubMed ID: 1958022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosensors in clinical chemistry.
    D'Orazio P
    Clin Chim Acta; 2003 Aug; 334(1-2):41-69. PubMed ID: 12867275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical biosensing with odorant binding proteins.
    Szunerits S; Boukherroub R; Vasilescu A
    Methods Enzymol; 2020; 642():345-369. PubMed ID: 32828260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Chemistry Interactions: Controlled Single-Entity Electrochemistry.
    Lu SM; Li MY; Long YT
    J Phys Chem Lett; 2022 Jun; 13(21):4653-4659. PubMed ID: 35604854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoplasmonic biosensor: coupling electrochemistry to localized surface plasmon resonance spectroscopy on nanocup arrays.
    Zhang D; Lu Y; Jiang J; Zhang Q; Yao Y; Wang P; Chen B; Cheng Q; Liu GL; Liu Q
    Biosens Bioelectron; 2015 May; 67():237-42. PubMed ID: 25172029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-responsive structural switching for nucleic acid-based sensors.
    Li D; Song S; Fan C
    Acc Chem Res; 2010 May; 43(5):631-41. PubMed ID: 20222738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Target Confinement in Small Reaction Volumes Using Microfluidic Technologies: A Smart Approach for Single-Entity Detection and Analysis.
    Ven K; Vanspauwen B; Pérez-Ruiz E; Leirs K; Decrop D; Gerstmans H; Spasic D; Lammertyn J
    ACS Sens; 2018 Feb; 3(2):264-284. PubMed ID: 29363316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode arrays with overlapped diffusion layers as electroanalytical detectors: theory and basic applications.
    Tomčík P
    Sensors (Basel); 2013 Oct; 13(10):13659-84. PubMed ID: 24152927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.