BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34167305)

  • 1. Long-Lived T-Shaped Micropillars with Submicron-Villi on PP/POE Surfaces with Grinding-Enhanced Water Repellency Fabricated via Hot Compression Molding.
    Chen A; Lai J; Li M; Fang C; Qin G; Ding S; Zhang J; Zhang Z; Huang H
    J Phys Chem B; 2021 Jul; 125(26):7290-7298. PubMed ID: 34167305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-micro hierarchy replacing micro-nano hierarchy: a precisely controlled way to produce wear-resistant superhydrophobic polymer surfaces.
    Huovinen E; Hirvi J; Suvanto M; Pakkanen TA
    Langmuir; 2012 Oct; 28(41):14747-55. PubMed ID: 23009694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties.
    Wu ZL; Wei R; Buguin A; Taulemesse JM; Le Moigne N; Bergeret A; Wang X; Keller P
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7485-91. PubMed ID: 23848054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructure design of polypropylene/expandable graphite flame retardant composites toughened by the polyolefin elastomer for enhancing its mechanical properties.
    Li R; Wang N; Bai Z; Chen S; Guo J; Chen X
    RSC Adv; 2021 Feb; 11(11):6022-6034. PubMed ID: 35423165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof.
    Kumar M; Bhardwaj R
    Sci Rep; 2020 Jan; 10(1):935. PubMed ID: 31969578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Polypropylene Fabrics Super-Repelling Various Liquids: A Simple, Rapid and Scalable Fabrication Method by Solvent Swelling.
    Zhu T; Cai C; Duan C; Zhai S; Liang S; Jin Y; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):13996-4003. PubMed ID: 26061028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically robust superhydrophobic polymer surfaces based on protective micropillars.
    Huovinen E; Takkunen L; Korpela T; Suvanto M; Pakkanen TT; Pakkanen TA
    Langmuir; 2014 Feb; 30(5):1435-43. PubMed ID: 24483340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of robust superhydrophobic surfaces.
    Wang D; Sun Q; Hokkanen MJ; Zhang C; Lin FY; Liu Q; Zhu SP; Zhou T; Chang Q; He B; Zhou Q; Chen L; Wang Z; Ras RHA; Deng X
    Nature; 2020 Jun; 582(7810):55-59. PubMed ID: 32494077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhemophobic and Antivirofouling Coating for Mechanically Durable and Wash-Stable Medical Textiles.
    Galante AJ; Haghanifar S; Romanowski EG; Shanks RMQ; Leu PW
    ACS Appl Mater Interfaces; 2020 May; 12(19):22120-22128. PubMed ID: 32320200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra Water Repellent Polypropylene Surfaces with Tunable Water Adhesion.
    Zhu T; Cai C; Guo J; Wang R; Zhao N; Xu J
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10224-10232. PubMed ID: 28252930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superhydrophobicity and liquid repellency of solutions on polypropylene.
    Rioboo R; Delattre B; Duvivier D; Vaillant A; De Coninck J
    Adv Colloid Interface Sci; 2012 Jul; 175():1-10. PubMed ID: 22483352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-wettable polypropylene fibers by facile surface treatment based on soy proteins.
    Salas C; Genzer J; Lucia LA; Hubbe MA; Rojas OJ
    ACS Appl Mater Interfaces; 2013 Jul; 5(14):6541-8. PubMed ID: 23789986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-and nanostructured silicon-based superomniphobic surfaces.
    Nguyen TP; Boukherroub R; Thomy V; Coffinier Y
    J Colloid Interface Sci; 2014 Feb; 416():280-8. PubMed ID: 24370432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low cost fabrication of a superhydrophobic V-grooved polymer surface.
    Hurst SM; Farshchian B; Brumfield L; Ok JT; Choi J; Kim J; Parkl S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):1884-7. PubMed ID: 23755612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the wettability of polypropylene surfaces with halloysite nanotubes.
    Liu M; Jia Z; Liu F; Jia D; Guo B
    J Colloid Interface Sci; 2010 Oct; 350(1):186-93. PubMed ID: 20638073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of the Surface Nano-Roughness on the Wettability Performance of Microstructured Metallic Surface Using Direct Laser Interference Patterning.
    Aguilar-Morales AI; Alamri S; Voisiat B; Kunze T; Lasagni AF
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31461830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.