These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 34167357)

  • 1. Optimal Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints.
    Itoh TD; Horinouchi T; Uchida H; Takahashi K; Ozaki H
    SLAS Technol; 2021 Dec; 26(6):650-659. PubMed ID: 34167357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SAGAS: Simulated annealing and greedy algorithm scheduler for laboratory automation.
    Arai Y; Takahashi K; Horinouchi T; Takahashi K; Ozaki H
    SLAS Technol; 2023 Aug; 28(4):264-277. PubMed ID: 36997066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-online patient scheduling in pathology laboratories.
    Azadeh A; Baghersad M; Farahani MH; Zarrin M
    Artif Intell Med; 2015 Jul; 64(3):217-26. PubMed ID: 26012952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamically optimizing experiment schedules of a laboratory robot system with simulated annealing.
    Cabrera C; Fine-Morris M; Pokross M; Kish K; Michalczyk S; Cahn M; Klei H; Russo MF
    J Lab Autom; 2014 Dec; 19(6):517-27. PubMed ID: 25117530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A branch and bound algorithm for optimal television commercial scheduling.
    Liao LW
    Math Biosci Eng; 2022 Mar; 19(5):4933-4945. PubMed ID: 35430848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scheduling prioritized patients in emergency department laboratories.
    Azadeh A; Hosseinabadi Farahani M; Torabzadeh S; Baghersad M
    Comput Methods Programs Biomed; 2014 Nov; 117(2):61-70. PubMed ID: 25214024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Design of Multipass Heuristics for Resource-Constrained Job Scheduling With Self-Competitive Genetic Programming.
    Nguyen S; Thiruvady D; Zhang M; Alahakoon D
    IEEE Trans Cybern; 2022 Sep; 52(9):8603-8616. PubMed ID: 33710971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-phase approach for the Radiotherapy Scheduling Problem.
    Pham TS; Rousseau LM; De Causmaecker P
    Health Care Manag Sci; 2022 Jun; 25(2):191-207. PubMed ID: 34505969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Employee Flexible Work Scheduling As A Classification Problem.
    Kiwanuka FN; Karadsheh L; Alqatawna J; Muhamad Amin AH
    Procedia Comput Sci; 2021; 192():3281-3290. PubMed ID: 34697561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem.
    Chen X; Kong Y; Dang L; Hou Y; Ye X
    PLoS One; 2015; 10(7):e0132600. PubMed ID: 26176764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scheduling the resident 80-hour work week: an operations research algorithm.
    Day TE; Napoli JT; Kuo PC
    Curr Surg; 2006; 63(2):136-41; discussion 141-2. PubMed ID: 16520117
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An improved gray wolf optimization to solve the multi-objective tugboat scheduling problem.
    Yao P; Duan X; Tang J
    PLoS One; 2024; 19(2):e0296966. PubMed ID: 38408052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Achieving Reproducibility and Closed-Loop Automation in Biological Experimentation with an IoT-Enabled Lab of the Future.
    Miles B; Lee PL
    SLAS Technol; 2018 Oct; 23(5):432-439. PubMed ID: 30045649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does bacteriology laboratory automation reduce time to results and increase quality management?
    Dauwalder O; Landrieve L; Laurent F; de Montclos M; Vandenesch F; Lina G
    Clin Microbiol Infect; 2016 Mar; 22(3):236-43. PubMed ID: 26577142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating Mobile Robots into Automated Laboratory Processes: A Suitable Workflow Management System.
    Thurow K; Gu X; Göde B; Roddelkopf T; Fleischer H; Stoll N; Neubert S
    SLAS Technol; 2021 Apr; 26(2):232-235. PubMed ID: 33181045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PaR-PaR laboratory automation platform.
    Linshiz G; Stawski N; Poust S; Bi C; Keasling JD; Hillson NJ
    ACS Synth Biol; 2013 May; 2(5):216-22. PubMed ID: 23654257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new parallel DNA algorithm to solve the task scheduling problem based on inspired computational model.
    Wang Z; Ji Z; Wang X; Wu T; Huang W
    Biosystems; 2017 Dec; 162():59-65. PubMed ID: 28890344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time scheduling of transit systems with transfer considerations using genetic algorithms.
    Deb K; Chakroborty P
    Evol Comput; 1998; 6(1):1-24. PubMed ID: 10021738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MIP models and hybrid algorithms for simultaneous job splitting and scheduling on unrelated parallel machines.
    Eroglu DY; Ozmutlu HC
    ScientificWorldJournal; 2014; 2014():519520. PubMed ID: 24977204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive Planning of Laboratory Equipment Based on Genetic Algorithms.
    Mi T
    Comput Intell Neurosci; 2022; 2022():5242251. PubMed ID: 36131900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.