These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34167359)

  • 1. Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images.
    Ali MAS; Misko O; Salumaa SO; Papkov M; Palo K; Fishman D; Parts L
    SLAS Discov; 2021 Oct; 26(9):1125-1137. PubMed ID: 34167359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ArtSeg-Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations.
    Ali MAS; Hollo K; Laasfeld T; Torp J; Tahk MJ; Rinken A; Palo K; Parts L; Fishman D
    Sci Rep; 2022 Jul; 12(1):11404. PubMed ID: 35794119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples.
    Fishman D; Salumaa SO; Majoral D; Laasfeld T; Peel S; Wildenhain J; Schreiner A; Palo K; Parts L
    J Microsc; 2021 Oct; 284(1):12-24. PubMed ID: 34081320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclei instance segmentation from histopathology images using Bayesian dropout based deep learning.
    Gudhe NR; Kosma VM; Behravan H; Mannermaa A
    BMC Med Imaging; 2023 Oct; 23(1):162. PubMed ID: 37858043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catheter segmentation in X-ray fluoroscopy using synthetic data and transfer learning with light U-nets.
    Gherardini M; Mazomenos E; Menciassi A; Stoyanov D
    Comput Methods Programs Biomed; 2020 Aug; 192():105420. PubMed ID: 32171151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DENSE-INception U-net for medical image segmentation.
    Zhang Z; Wu C; Coleman S; Kerr D
    Comput Methods Programs Biomed; 2020 Aug; 192():105395. PubMed ID: 32163817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Cascaded Deep Learning Framework for Segmentation of Nuclei in Digital Histology Images.
    Saednia K; Tran WT; Sadeghi-Naini A
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4764-4767. PubMed ID: 36086360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of learning parameters on the performance of the U-Net architecture for cell nuclei segmentation from microscopic cell images.
    Jena B; Digdarshi D; Paul S; Nayak GK; Saxena S
    Microscopy (Oxf); 2023 Jun; 72(3):249-264. PubMed ID: 36409001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards pixel-to-pixel deep nucleus detection in microscopy images.
    Xing F; Xie Y; Shi X; Chen P; Zhang Z; Yang L
    BMC Bioinformatics; 2019 Sep; 20(1):472. PubMed ID: 31521104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Deep Learning Architectures for Complex Immunofluorescence Nuclear Image Segmentation.
    Kromp F; Fischer L; Bozsaky E; Ambros IM; Dorr W; Beiske K; Ambros PF; Hanbury A; Taschner-Mandl S
    IEEE Trans Med Imaging; 2021 Jul; 40(7):1934-1949. PubMed ID: 33784615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRUU-Net: Integrated convolutional and gated recurrent neural network for cell segmentation.
    Wollmann T; Gunkel M; Chung I; Erfle H; Rippe K; Rohr K
    Med Image Anal; 2019 Aug; 56():68-79. PubMed ID: 31200289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NuSeT: A deep learning tool for reliably separating and analyzing crowded cells.
    Yang L; Ghosh RP; Franklin JM; Chen S; You C; Narayan RR; Melcher ML; Liphardt JT
    PLoS Comput Biol; 2020 Sep; 16(9):e1008193. PubMed ID: 32925919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation.
    Ibtehaz N; Rahman MS
    Neural Netw; 2020 Jan; 121():74-87. PubMed ID: 31536901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MDC-net: A new convolutional neural network for nucleus segmentation in histopathology images with distance maps and contour information.
    Liu X; Guo Z; Cao J; Tang J
    Comput Biol Med; 2021 Aug; 135():104543. PubMed ID: 34146800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new deep learning method for blood vessel segmentation in retinal images based on convolutional kernels and modified U-Net model.
    Gegundez-Arias ME; Marin-Santos D; Perez-Borrero I; Vasallo-Vazquez MJ
    Comput Methods Programs Biomed; 2021 Jun; 205():106081. PubMed ID: 33882418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automated in vitro wound healing microscopy image analysis approach utilizing U-net-based deep learning methodology.
    Doğru D; Özdemir GD; Özdemir MA; Ercan UK; Topaloğlu Avşar N; Güren O
    BMC Med Imaging; 2024 Jun; 24(1):158. PubMed ID: 38914942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic image annotation for fluorescent cell nuclei segmentation.
    Englbrecht F; Ruider IE; Bausch AR
    PLoS One; 2021; 16(4):e0250093. PubMed ID: 33861785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing Deep Learning Performance for Chronic Lymphocytic Leukaemia Cell Segmentation in Brightfield Microscopy Images.
    Vašinková M; Doleží V; Vašinek M; Gajdoš P; Kriegová E
    Bioinform Biol Insights; 2024; 18():11779322241272387. PubMed ID: 39246684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning segmentation strategy that minimizes the amount of manually annotated images.
    Pécot T; Alekseyenko A; Wallace K
    F1000Res; 2021; 10():256. PubMed ID: 35136569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.