These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34167459)

  • 1. VISPR-online: a web-based interactive tool to visualize CRISPR screening experiments.
    Cui Y; Wang Z; Köster J; Liao X; Peng S; Tang T; Huang C; Yang C
    BMC Bioinformatics; 2021 Jun; 22(1):344. PubMed ID: 34167459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR.
    Li W; Köster J; Xu H; Chen CH; Xiao T; Liu JS; Brown M; Liu XS
    Genome Biol; 2015 Dec; 16():281. PubMed ID: 26673418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAVOOC: designing CRISPR sgRNAs using 3D protein structures and functional domain annotations.
    Schaefer M; Clevert DA; Weiss B; Steffen A
    Bioinformatics; 2019 Jul; 35(13):2309-2310. PubMed ID: 30445568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guide Picker is a comprehensive design tool for visualizing and selecting guides for CRISPR experiments.
    Hough SH; Kancleris K; Brody L; Humphryes-Kirilov N; Wolanski J; Dunaway K; Ajetunmobi A; Dillard V
    BMC Bioinformatics; 2017 Mar; 18(1):167. PubMed ID: 28288556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking-Cas-interactive design of guide RNAs for CRISPR-Cas experiments for ENSEMBL genomes.
    Oliveros JC; Franch M; Tabas-Madrid D; San-León D; Montoliu L; Cubas P; Pazos F
    Nucleic Acids Res; 2016 Jul; 44(W1):W267-71. PubMed ID: 27166368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MultiGuideScan: a multi-processing tool for designing CRISPR guide RNA libraries.
    Li T; Wang S; Luo F; Wu FX; Wang J
    Bioinformatics; 2020 Feb; 36(3):920-921. PubMed ID: 31386102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inference of CRISPR Edits from Sanger Trace Data.
    Conant D; Hsiau T; Rossi N; Oki J; Maures T; Waite K; Yang J; Joshi S; Kelso R; Holden K; Enzmann BL; Stoner R
    CRISPR J; 2022 Feb; 5(1):123-130. PubMed ID: 35119294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation.
    Jacquin ALS; Odom DT; Lukk M
    Bioinformatics; 2019 Sep; 35(17):3146-3147. PubMed ID: 30649181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pgRNAFinder: a web-based tool to design distance independent paired-gRNA.
    Xiong Y; Xie X; Wang Y; Ma W; Liang P; Songyang Z; Dai Z
    Bioinformatics; 2017 Nov; 33(22):3642-3644. PubMed ID: 28961776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT-Finder: A Web Service for CRISPR Optimal Target Prediction and Visualization.
    Zhu H; Misel L; Graham M; Robinson ML; Liang C
    Sci Rep; 2016 May; 6():25516. PubMed ID: 27210050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KOnezumi: a web application for automating gene disruption strategies to generate knockout mice.
    Kuno A; Mizuno S; Takahashi S
    Bioinformatics; 2019 Sep; 35(18):3479-3481. PubMed ID: 30726877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing.
    Cancellieri S; Canver MC; Bombieri N; Giugno R; Pinello L
    Bioinformatics; 2020 Apr; 36(7):2001-2008. PubMed ID: 31764961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-DT: designing gRNAs for the CRISPR-Cpf1 system with improved target efficiency and specificity.
    Zhu H; Liang C
    Bioinformatics; 2019 Aug; 35(16):2783-2789. PubMed ID: 30615056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting and visualizing features of CRISPR-Cas systems.
    Nethery MA; Barrangou R
    Methods Enzymol; 2019; 616():1-25. PubMed ID: 30691639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
    Prykhozhij SV; Rajan V; Gaston D; Berman JN
    PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISP-view: a database of functional genetic screens spanning multiple phenotypes.
    Cui Y; Cheng X; Chen Q; Song B; Chiu A; Gao Y; Dawson T; Chao L; Zhang W; Li D; Zeng Z; Yu J; Li Z; Fei T; Peng S; Li W
    Nucleic Acids Res; 2021 Jan; 49(D1):D848-D854. PubMed ID: 33010154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-Local: a local single-guide RNA (sgRNA) design tool for non-reference plant genomes.
    Sun J; Liu H; Liu J; Cheng S; Peng Y; Zhang Q; Yan J; Liu HJ; Chen LL
    Bioinformatics; 2019 Jul; 35(14):2501-2503. PubMed ID: 30500879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.
    Wang D; Zhang C; Wang B; Li B; Wang Q; Liu D; Wang H; Zhou Y; Shi L; Lan F; Wang Y
    Nat Commun; 2019 Sep; 10(1):4284. PubMed ID: 31537810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.