BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34167702)

  • 1. The importance of inertial measurement unit placement in assessing upper limb motion.
    Höglund G; Grip H; Öhberg F
    Med Eng Phys; 2021 Jun; 92():1-9. PubMed ID: 34167702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of Upper-Limb Inertial Measurement Unit Data to Joint Angles: A Systematic Review.
    Fang Z; Woodford S; Senanayake D; Ackland D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Dimensional Kinematics during Shoulder Scaption in Asymptomatic and Symptomatic Subjects by Inertial Sensors: A Cross-Sectional Study.
    Roldán-Jiménez C; Cuesta-Vargas AI; Martín-Martín J
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional range of motion in the upper extremity and trunk joints: Nine functional everyday tasks with inertial sensors.
    Doğan M; Koçak M; Onursal Kılınç Ö; Ayvat F; Sütçü G; Ayvat E; Kılınç M; Ünver Ö; Aksu Yıldırım S
    Gait Posture; 2019 May; 70():141-147. PubMed ID: 30875600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of scapular kinematics from optical motion capture and inertial measurement units during a work-related and functional task protocol.
    Friesen KB; Sigurdson A; Lang AE
    Med Biol Eng Comput; 2023 Jun; 61(6):1521-1531. PubMed ID: 36781544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial Measurement Unit Based Upper Extremity Motion Characterization for Action Research Arm Test and Activities of Daily Living.
    Nam HS; Lee WH; Seo HG; Kim YJ; Bang MS; Kim S
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31013966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. IMU-based sensor-to-segment multiple calibration for upper limb joint angle measurement-a proof of concept.
    Zabat M; Ababou A; Ababou N; Dumas R
    Med Biol Eng Comput; 2019 Nov; 57(11):2449-2460. PubMed ID: 31471784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Wearable Sensors Valid and Reliable for Studying the Baseball Pitching Motion? An Independent Comparison With Marker-Based Motion Capture.
    Camp CL; Loushin S; Nezlek S; Fiegen AP; Christoffer D; Kaufman K
    Am J Sports Med; 2021 Sep; 49(11):3094-3101. PubMed ID: 34339317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Inertial Sensors Allow for Quantitative Assessment of Shoulder and Elbow Kinematics in a Cadaveric Knee Arthroscopy Model.
    Rose M; Curtze C; O'Sullivan J; El-Gohary M; Crawford D; Friess D; Brady JM
    Arthroscopy; 2017 Dec; 33(12):2110-2116. PubMed ID: 28866347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The validation of a low-cost inertial measurement unit system to quantify simple and complex upper-limb joint angles.
    Goreham JA; MacLean KFE; Ladouceur M
    J Biomech; 2022 Mar; 134():111000. PubMed ID: 35217243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs).
    Rihar A; Mihelj M; Pašič J; Kolar J; Munih M
    J Neuroeng Rehabil; 2014 Sep; 11():133. PubMed ID: 25194825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Kinematic Information Acquisition Model That Uses Digital Signals from an Inertial and Magnetic Motion Capture System.
    Alarcón-Aldana AC; Callejas-Cuervo M; Bastos-Filho T; Bó APL
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Upper-Extremity Joint Angles Using Harmony Exoskeleton.
    De Oliveira AC; Sulzer JS; Deshpande AD
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():916-925. PubMed ID: 33872155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Validation with a Robot Arm.
    Białecka M; Gruszczyński K; Cisowski P; Kaszyński J; Baka C; Lubiatowski P
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shoulder Range of Motion Measurement Using Inertial Measurement Unit-Concurrent Validity and Reliability.
    Kaszyński J; Baka C; Białecka M; Lubiatowski P
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Motion Segment Size as a New Sensor-based Functional Outcome Measure in Stroke Rehabilitation.
    Nam HS; Lee WH; Seo HG; Smuck MW; Kim S
    J Int Med Res; 2022 Sep; 50(9):3000605221122750. PubMed ID: 36129970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validity and Reliability of Wearable Motion Sensors for Clinical Assessment of Shoulder Function in Brachial Plexus Birth Injury.
    Grip H; Källströmer A; Öhberg F
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Scapular Kinematics through Wearable Magneto-Inertial Measurement Units: State of the Art and New Frontiers.
    Antonacci C; Longo UG; Nazarian A; Schena E; Carnevale A
    Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shoulder assessment according to the international classification of functioning by means of inertial sensor technologies: A systematic review.
    De Baets L; van der Straaten R; Matheve T; Timmermans A
    Gait Posture; 2017 Sep; 57():278-294. PubMed ID: 28683420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional estimation of bony segment lengths using magneto-inertial sensing: Application to the humerus.
    Crabolu M; Pani D; Raffo L; Conti M; Cereatti A
    PLoS One; 2018; 13(9):e0203861. PubMed ID: 30208109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.