BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 3416816)

  • 1. Uptake of 3,5,3'-triiodothyronine by the perfused rat liver: return to the free hormone hypothesis.
    Mendel CM; Weisiger RA; Cavalieri RR
    Endocrinology; 1988 Oct; 123(4):1817-24. PubMed ID: 3416816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake of thyroxine by the perfused rat liver: implications for the free hormone hypothesis.
    Mendel CM; Cavalieri RR; Weisiger RA
    Am J Physiol; 1988 Aug; 255(2 Pt 1):E110-9. PubMed ID: 3407767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady state model of 3,5,3'-triiodothyronine transport in liver predicts high cellular exchangeable hormone concentration relative to in vitro free hormone concentration.
    Pardridge WM; Landaw EM
    Endocrinology; 1987 Mar; 120(3):1059-68. PubMed ID: 3803309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of cortisol by the perfused rat liver: validity of the free hormone hypothesis applied to cortisol.
    Mendel CM; Kuhn RW; Weisiger RA; Cavalieri RR; Siiteri PK; Cunha GR; Murai JT
    Endocrinology; 1989 Jan; 124(1):468-76. PubMed ID: 2909377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake of corticosterone by the perfused rat liver.
    Mendel CM; Kuhn RW; Weisiger RA
    Endocrinology; 1991 Jul; 129(1):27-32. PubMed ID: 2055188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecificity of triiodothyronine transport into brain, liver, and salivary gland: role of carrier- and plasma protein-mediated transport.
    Terasaki T; Pardridge WM
    Endocrinology; 1987 Sep; 121(3):1185-91. PubMed ID: 3622378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of triiodothyronine dissociation from bovine serum albumin: modification of the resin capture method with subsequent computer modeling.
    Whittem T; Ferguson DC
    Endocrinology; 1990 Nov; 127(5):2190-8. PubMed ID: 2078221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcellular and transnuclear transport of 3,5,3'-triiodothyronine in isolated hepatocytes.
    Mooradian AD; Schwartz HL; Mariash CN; Oppenheimer JH
    Endocrinology; 1985 Dec; 117(6):2449-56. PubMed ID: 4065040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hepatic uptake of 3,5,3'-triiodothyronine: electrochemical driving forces.
    Weisiger RA; Luxon BA; Cavalieri RR
    Am J Physiol; 1992 Jun; 262(6 Pt 1):G1104-12. PubMed ID: 1616040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An analysis of the interrelationship of nuclear and plasma triiodothyronine in the sea lamprey, lake trout, and rat: evolutionary considerations.
    Weirich RT; Schwartz HL; Oppenheimer JH
    Endocrinology; 1987 Feb; 120(2):664-77. PubMed ID: 3803297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of dexamethasone on kinetics and distribution of triiodothyronine in the rat.
    Cavalieri RR; Castle JN; McMahon FA
    Endocrinology; 1984 Jan; 114(1):215-21. PubMed ID: 6690269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and use of a mathematical two-pool model of distribution and metabolism of 3,3',5-triiodothyronine in a recirculating rat liver perfusion system: albumin does not play a role in cellular transport.
    Docter R; de Jong M; van der Hoek HJ; Krenning EP; Hennemann G
    Endocrinology; 1990 Jan; 126(1):451-9. PubMed ID: 2293999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro binding of L-triiodothyronine to receptors in rat liver nuclei. Kinectics of binding, extraction properties, and lack of requirement for cytosol proteins.
    Surks MI; Koerner DH; Oppenheimer JH
    J Clin Invest; 1975 Jan; 55(1):50-60. PubMed ID: 162784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The hepatic transcellular transport of 3,5,3'-triiodothyronine is reduced in aged rats.
    Mooradian AD
    Biochim Biophys Acta; 1990 Aug; 1054(1):1-7. PubMed ID: 2383598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro 3,5,3'-triiodothyronine binding to rat cerebrocortical neuronal and glial nuclei suggests the presence of binding sites unavailable in vivo.
    Kolodny JM; Larsen PR; Silva JE
    Endocrinology; 1985 May; 116(5):2019-28. PubMed ID: 2985367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of dexamethasone on triiodothyronine production in the perfused rat liver and kidney.
    Jennings AS; Ferguson DC
    Endocrinology; 1984 Jan; 114(1):31-6. PubMed ID: 6690278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of triiodothyronine transport and accumulation in rat erythrocytes.
    Osty J; Jego L; Francon J; Blondeau JP
    Endocrinology; 1988 Nov; 123(5):2303-11. PubMed ID: 3168926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate feeding increases total body and specific tissue 3,5,3'-triiodothyronine neogenesis in the rat.
    Gavin LA; Moeller M; McMahon FA; Castle JN; Gulli R; Cavalieri RR
    Endocrinology; 1988 Aug; 123(2):1075-81. PubMed ID: 3396499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated serum levels of T3 without metabolic effect in nutritionally deficient rats, attributable to reduced cellular uptake of T3.
    Okamura K; Taurog A; DiStefano JJ
    Endocrinology; 1981 Aug; 109(2):673-5. PubMed ID: 7250065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thyroid hormone-binding proteins in plasma facilitate uniform distribution of thyroxine within tissues: a perfused rat liver study.
    Mendel CM; Weisiger RA; Jones AL; Cavalieri RR
    Endocrinology; 1987 May; 120(5):1742-9. PubMed ID: 3106010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.