These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 3416830)
21. Molecular cloning of a ubiquitously distributed microtubule-associated protein with Mr 190,000. Aizawa H; Emori Y; Murofushi H; Kawasaki H; Sakai H; Suzuki K J Biol Chem; 1990 Aug; 265(23):13849-55. PubMed ID: 2380192 [TBL] [Abstract][Full Text] [Related]
22. Biochemical dissection of the role of the one-kilodalton carboxyl-terminal moiety of tubulin in its assembly into microtubules. Vera JC; Rivas CI; Maccioni RB Biochemistry; 1989 Jan; 28(1):333-9. PubMed ID: 2706257 [TBL] [Abstract][Full Text] [Related]
23. Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Serrano L; Avila J; Maccioni RB Biochemistry; 1984 Sep; 23(20):4675-81. PubMed ID: 6388633 [TBL] [Abstract][Full Text] [Related]
24. Interaction mechanism between microtubule-associated proteins and microtubules. A proton nuclear magnetic resonance analysis on the binding of synthetic peptide to tubulin. Kotani S; Kawai G; Yokoyama S; Murofushi H Biochemistry; 1990 Oct; 29(43):10049-54. PubMed ID: 2271637 [TBL] [Abstract][Full Text] [Related]
25. The tubulin-binding sequence of brain microtubule-associated proteins, tau and MAP-2, is also involved in actin binding. Correas I; Padilla R; Avila J Biochem J; 1990 Jul; 269(1):61-4. PubMed ID: 2115775 [TBL] [Abstract][Full Text] [Related]
26. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains. Chau MF; Radeke MJ; de Inés C; Barasoain I; Kohlstaedt LA; Feinstein SC Biochemistry; 1998 Dec; 37(51):17692-703. PubMed ID: 9922135 [TBL] [Abstract][Full Text] [Related]
27. Regulatory aspects of the colchicine interactions with tubulin. Avila J; Serrano L; Maccioni RB Mol Cell Biochem; 1987 Jan; 73(1):29-36. PubMed ID: 3543651 [TBL] [Abstract][Full Text] [Related]
28. Interaction of microtubule-associated proteins with microtubules: yeast lysyl- and valyl-tRNA synthetases and tau 218-235 synthetic peptide as model systems. Melki R; Kerjan P; Waller JP; Carlier MF; Pantaloni D Biochemistry; 1991 Dec; 30(49):11536-45. PubMed ID: 1747372 [TBL] [Abstract][Full Text] [Related]
29. Assembly properties of tubulin after carboxyl group modification. Mejillano MR; Himes RH J Biol Chem; 1991 Jan; 266(1):657-64. PubMed ID: 1985923 [TBL] [Abstract][Full Text] [Related]
30. Conformational properties of the beta(400-436) and beta(400-445) C-terminal peptides of porcine brain tubulin. Reed J; Hull WE; Ponstingl H; Himes RH Biochemistry; 1992 Dec; 31(47):11888-95. PubMed ID: 1445919 [TBL] [Abstract][Full Text] [Related]
31. Separation of active tubulin and microtubule-associated proteins by ultracentrifugation and isolation of a component causing the formation of microtubule bundles. Hamel E; Lin CM Biochemistry; 1984 Aug; 23(18):4173-84. PubMed ID: 6487596 [TBL] [Abstract][Full Text] [Related]
32. A 205 kDa protein from non-neuronal cells in culture contains tubulin binding epitopes. Vial C; Armas-Portela R; Avila J; González M; Maccioni RB Mol Cell Biochem; 1995 Mar; 144(2):109-116. PubMed ID: 7542740 [TBL] [Abstract][Full Text] [Related]
33. Binding specificities of purified porcine brain alpha- and beta-tubulin subunits and of microtubule-associated proteins 1 and 2 examined by electron microscopy and solid-phase binding assays. Furtner R; Wiche G Eur J Cell Biol; 1987 Dec; 45(1):1-8. PubMed ID: 3443106 [TBL] [Abstract][Full Text] [Related]
34. Stabilization and bundling of subtilisin-treated microtubules induced by microtubule associated proteins. Saoudi Y; Paintrand I; Multigner L; Job D J Cell Sci; 1995 Jan; 108 ( Pt 1)():357-67. PubMed ID: 7738110 [TBL] [Abstract][Full Text] [Related]
35. Removal of the projection domain of microtubule-associated protein 2 alters its interaction with tubulin. Fellous A; Prasad V; Ohayon R; Jordan MA; Ludueña RF J Protein Chem; 1994 May; 13(4):381-91. PubMed ID: 7986343 [TBL] [Abstract][Full Text] [Related]
36. Systematic identification of tubulin-interacting fragments of the microtubule-associated protein Tau leads to a highly efficient promoter of microtubule assembly. Fauquant C; Redeker V; Landrieu I; Wieruszeski JM; Verdegem D; Laprévote O; Lippens G; Gigant B; Knossow M J Biol Chem; 2011 Sep; 286(38):33358-68. PubMed ID: 21757739 [TBL] [Abstract][Full Text] [Related]
37. Unique functional characteristics of the polymerization and MAP binding regulatory domains of plant tubulin. Hugdahl JD; Bokros CL; Hanesworth VR; Aalund GR; Morejohn LC Plant Cell; 1993 Sep; 5(9):1063-80. PubMed ID: 8104575 [TBL] [Abstract][Full Text] [Related]
38. Newly-synthesized beta-tubulin demonstrates domain-specific interactions with the cytosolic chaperonin. Dobrzynski JK; Sternlicht ML; Farr GW; Sternlicht H Biochemistry; 1996 Dec; 35(49):15870-82. PubMed ID: 8961952 [TBL] [Abstract][Full Text] [Related]
39. The microtubule-binding fragment of microtubule-associated protein-2: location of the protease-accessible site and identification of an assembly-promoting peptide. Joly JC; Flynn G; Purich DL J Cell Biol; 1989 Nov; 109(5):2289-94. PubMed ID: 2808529 [TBL] [Abstract][Full Text] [Related]
40. Inhibitory effects of poly(L-aspartic acid) on the assembly of brain microtubules and the interaction of microtubule-associated protein 2 with F-actin in vitro. Nakamura A; Arai T; Kondo Y; Fujii T J Biochem; 1989 Jul; 106(1):93-7. PubMed ID: 2777757 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]