These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 34168325)
1. Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform. Pandey R; Chang D; Smieja M; Hoare T; Li Y; Soleymani L Nat Chem; 2021 Sep; 13(9):895-901. PubMed ID: 34168325 [TBL] [Abstract][Full Text] [Related]
2. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea. Cho S; Park TS; Nahapetian TG; Yoon JY Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472 [TBL] [Abstract][Full Text] [Related]
3. Detection of bacteria using fluorogenic DNAzymes. Aguirre SD; Ali MM; Kanda P; Li Y J Vis Exp; 2012 May; (63):. PubMed ID: 22688431 [TBL] [Abstract][Full Text] [Related]
4. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events. Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682 [TBL] [Abstract][Full Text] [Related]
5. DNAzyme-Immobilizing Microgel Magnetic Beads Enable Rapid, Specific, Culture-Free, and Wash-Free Electrochemical Quantification of Bacteria in Untreated Urine. Pandey R; Lu Y; Osman E; Saxena S; Zhang Z; Qian S; Pollinzi A; Smieja M; Li Y; Soleymani L; Hoare T ACS Sens; 2022 Apr; 7(4):985-994. PubMed ID: 35384648 [TBL] [Abstract][Full Text] [Related]
6. Optimizing peptide nucleic acid probes for hybridization-based detection and identification of bacterial pathogens. Mach KE; Kaushik AM; Hsieh K; Wong PK; Wang TH; Liao JC Analyst; 2019 Feb; 144(5):1565-1574. PubMed ID: 30656297 [TBL] [Abstract][Full Text] [Related]
7. A Nanostructured Gold/Graphene Microfluidic Device for Direct and Plasmonic-Assisted Impedimetric Detection of Bacteria. Siavash Moakhar R; AbdelFatah T; Sanati A; Jalali M; Flynn SE; Mahshid SS; Mahshid S ACS Appl Mater Interfaces; 2020 May; 12(20):23298-23310. PubMed ID: 32302093 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Safavieh M; Ahmed MU; Tolba M; Zourob M Biosens Bioelectron; 2012 Jan; 31(1):523-8. PubMed ID: 22177893 [TBL] [Abstract][Full Text] [Related]
9. Highly Sensitive RNA-Cleaving DNAzyme Sensors from Surface-to-Surface Product Enrichment. Samani SE; Chang D; McConnell EM; Rothenbroker M; Filipe CDM; Li Y Chembiochem; 2020 Mar; 21(5):632-637. PubMed ID: 31544309 [TBL] [Abstract][Full Text] [Related]
10. Smartphone-Based Paper Microfluidic Immunoassay of Salmonella and E. coli. Dieckhaus L; Park TS; Yoon JY Methods Mol Biol; 2021; 2182():83-101. PubMed ID: 32894489 [TBL] [Abstract][Full Text] [Related]
11. In Vitro Selection of M Zhou Q; Zhang G; Wu Y; Zhang Q; Liu Y; Chang Y; Liu M J Am Chem Soc; 2023 Oct; 145(39):21370-21377. PubMed ID: 37683187 [TBL] [Abstract][Full Text] [Related]
12. Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Zhao Y; Zeng D; Yan C; Chen W; Ren J; Jiang Y; Jiang L; Xue F; Ji D; Tang F; Zhou M; Dai J Analyst; 2020 Apr; 145(8):3106-3115. PubMed ID: 32159201 [TBL] [Abstract][Full Text] [Related]
13. Mobile Platform for Multiplexed Detection and Differentiation of Disease-Specific Nucleic Acid Sequences, Using Microfluidic Loop-Mediated Isothermal Amplification and Smartphone Detection. Chen W; Yu H; Sun F; Ornob A; Brisbin R; Ganguli A; Vemuri V; Strzebonski P; Cui G; Allen KJ; Desai SA; Lin W; Nash DM; Hirschberg DL; Brooks I; Bashir R; Cunningham BT Anal Chem; 2017 Nov; 89(21):11219-11226. PubMed ID: 28819973 [TBL] [Abstract][Full Text] [Related]
14. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations. Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019 [TBL] [Abstract][Full Text] [Related]
15. Magnetic-Based Microfluidic Device for On-Chip Isolation and Detection of Tumor-Derived Exosomes. Xu H; Liao C; Zuo P; Liu Z; Ye BC Anal Chem; 2018 Nov; 90(22):13451-13458. PubMed ID: 30234974 [TBL] [Abstract][Full Text] [Related]
16. Rapid and simultaneous analysis of twelve virulence factor genes by a microfluidic-CFPA chip for identifying diarrheagenic Escherichia coli. Yang B; Fan Y; Li Y; Yan J; Fang X; Kong J Analyst; 2020 Jun; 145(11):3814-3821. PubMed ID: 32219233 [TBL] [Abstract][Full Text] [Related]
17. Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Guo Y; Wang Y; Liu S; Yu J; Wang H; Wang Y; Huang J Biosens Bioelectron; 2016 Jan; 75():315-9. PubMed ID: 26334590 [TBL] [Abstract][Full Text] [Related]
18. Amplification-free detection of Zhang G; Wu Y; Xue W; Wang D; Chang Y; Liu M Chem Commun (Camb); 2024 Jun; 60(53):6741-6744. PubMed ID: 38809259 [TBL] [Abstract][Full Text] [Related]
20. Discovery and Biosensing Applications of Diverse RNA-Cleaving DNAzymes. Liu M; Chang D; Li Y Acc Chem Res; 2017 Sep; 50(9):2273-2283. PubMed ID: 28805376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]