These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34168327)

  • 21. An Injectable PEG-BSA-Coumarin-GOx Hydrogel for Fluorescence Turn-on Glucose Detection.
    Srinivasan G; Chen J; Parisi J; Brückner C; Yao X; Lei Y
    Appl Biochem Biotechnol; 2015 Nov; 177(5):1115-26. PubMed ID: 26288081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Generic high-capacity protein capture and release by pH control.
    Ferrand-Drake Del Castillo G; Hailes RLN; Adali-Kaya Z; Robson T; Dahlin A
    Chem Commun (Camb); 2020 Jun; 56(44):5889-5892. PubMed ID: 32373823
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Triggered Release of Loads from Microcapsule-in-Microcapsule Hydrogel Microcarriers: En-Route to an "Artificial Pancreas".
    Fischer A; Lilienthal S; Vázquez-González M; Fadeev M; Sohn YS; Nechushtai R; Willner I
    J Am Chem Soc; 2020 Mar; 142(9):4223-4234. PubMed ID: 32031792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Armored Urease: Enzyme-Bioconjugated Poly(acrylamide) Hydrogel as a Storage and Sensing Platform.
    Kunduru KR; Kutcherlapati SNR; Arunbabu D; Jana T
    Methods Enzymol; 2017; 590():143-167. PubMed ID: 28411636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strengthening alginate/polyacrylamide hydrogels using various multivalent cations.
    Yang CH; Wang MX; Haider H; Yang JH; Sun JY; Chen YM; Zhou J; Suo Z
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10418-22. PubMed ID: 24128011
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aqueous Two-Phase Droplet-Templated Colloidosomes Composed of Self-Formed Particles via Spatial Confined Biomineralization.
    Qu F; Meng T; Dong Y; Sun H; Tang Q; Liu T; Wang Y
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):35613-35621. PubMed ID: 31505927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High throughput miniaturization of artificial cells.
    Mobed-Miremadi M; Acks E; Polsaward S; Chen D
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Oct; 39(5):310-6. PubMed ID: 21605001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Secretion and Reversible Assembly of Extracellular-like Matrix by Enzyme-Active Colloidosome-Based Protocells.
    Akkarachaneeyakorn K; Li M; Davis SA; Mann S
    Langmuir; 2016 Mar; 32(12):2912-9. PubMed ID: 26981922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative diffusivity measurements for alginate-based atomized and inkjet-bioprinted artificial cells using fluorescence microscopy.
    Mobed-Miremadi M; Asi B; Parasseril J; Wong E; Tat M; Shan Y
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):196-201. PubMed ID: 22992197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Sep; 60():144-153. PubMed ID: 28733255
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient method for the fabrication of temperature-sensitive hydrogel microactuators.
    van der Linden H; Olthuis W; Bergveld P
    Lab Chip; 2004 Dec; 4(6):619-24. PubMed ID: 15570375
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural protein-based hydrogels with high strength and rapid self-recovery.
    Liu Z; Tang Z; Zhu L; Lu S; Chen F; Tang C; Sun H; Yang J; Qin G; Chen Q
    Int J Biol Macromol; 2019 Dec; 141():108-116. PubMed ID: 31479668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic cellularity based on non-lipid micro-compartments and protocell models.
    Li M; Huang X; Tang TY; Mann S
    Curr Opin Chem Biol; 2014 Oct; 22():1-11. PubMed ID: 24952153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional printing fiber reinforced hydrogel composites.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15998-6006. PubMed ID: 25197745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogel-based microactuators with remote-controlled locomotion and fast Pb2+-response for micromanipulation.
    Liu YM; Wang W; Zheng WC; Ju XJ; Xie R; Zerrouki D; Deng NN; Chu LY
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7219-26. PubMed ID: 23865475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable preparation of monodisperse alginate microcapsules with oil cores.
    Mou CL; Deng QZ; Hu JX; Wang LY; Deng HB; Xiao G; Zhan Y
    J Colloid Interface Sci; 2020 Jun; 569():307-319. PubMed ID: 32126344
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications.
    Growney Kalaf EA; Flores R; Bledsoe JG; Sell SA
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():198-210. PubMed ID: 27040212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4D Printing with Mechanically Robust, Thermally Actuating Hydrogels.
    Bakarich SE; Gorkin R; in het Panhuis M; Spinks GM
    Macromol Rapid Commun; 2015 Jun; 36(12):1211-7. PubMed ID: 25864515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.
    Marquis M; Davy J; Cathala B; Fang A; Renard D
    Carbohydr Polym; 2015 Feb; 116():189-99. PubMed ID: 25458289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties.
    Leonard M; De Boisseson MR; Hubert P; Dalençon F; Dellacherie E
    J Control Release; 2004 Aug; 98(3):395-405. PubMed ID: 15312995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.