BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 34168616)

  • 1. Gastrointestinal Distension by Pectin-Containing Carbonated Solution Suppresses Food Intake and Enhances Glucose Tolerance
    Ohbayashi K; Oyama Y; Yamaguchi C; Asano T; Yada T; Iwasaki Y
    Front Endocrinol (Lausanne); 2021; 12():676869. PubMed ID: 34168616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms.
    Krieger JP
    Peptides; 2020 Sep; 131():170342. PubMed ID: 32522585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GLP-1 release and vagal afferent activation mediate the beneficial metabolic and chronotherapeutic effects of D-allulose.
    Iwasaki Y; Sendo M; Dezaki K; Hira T; Sato T; Nakata M; Goswami C; Aoki R; Arai T; Kumari P; Hayakawa M; Masuda C; Okada T; Hara H; Drucker DJ; Yamada Y; Tokuda M; Yada T
    Nat Commun; 2018 Jan; 9(1):113. PubMed ID: 29317623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The common hepatic branch of the vagus is not required to mediate the glycemic and food intake suppressive effects of glucagon-like-peptide-1.
    Hayes MR; Kanoski SE; De Jonghe BC; Leichner TM; Alhadeff AL; Fortin SM; Arnold M; Langhans W; Grill HJ
    Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1479-85. PubMed ID: 21849636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic high fat diet impairs glucagon like peptide-1 sensitivity in vagal afferents.
    Al Helaili A; Park SJ; Beyak MJ
    Biochem Biophys Res Commun; 2020 Nov; 533(1):110-117. PubMed ID: 32943186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal Acyl-CoA synthetase 5 (ACSL5) deficiency potentiates postprandial GLP-1 & PYY secretion, reduces food intake, and protects against diet-induced obesity.
    Griffin JD; Zhu Y; Reeves A; Buhman KK; Greenberg AS
    Mol Metab; 2024 May; 83():101918. PubMed ID: 38499083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral oxytocin activates vagal afferent neurons to suppress feeding in normal and leptin-resistant mice: a route for ameliorating hyperphagia and obesity.
    Iwasaki Y; Maejima Y; Suyama S; Yoshida M; Arai T; Katsurada K; Kumari P; Nakabayashi H; Kakei M; Yada T
    Am J Physiol Regul Integr Comp Physiol; 2015 Mar; 308(5):R360-9. PubMed ID: 25540101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy.
    Ripken D; van der Wielen N; van der Meulen J; Schuurman T; Witkamp RF; Hendriks HF; Koopmans SJ
    Physiol Behav; 2015 Feb; 139():167-76. PubMed ID: 25449395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Receptor-mediated activation of gastric vagal afferents by glucagon-like peptide-1 in the rat.
    Bucinskaite V; Tolessa T; Pedersen J; Rydqvist B; Zerihun L; Holst JJ; Hellström PM
    Neurogastroenterol Motil; 2009 Sep; 21(9):978-e78. PubMed ID: 19453518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Fat Diet-Induced Obesity Ablates Gastric Vagal Afferent Circadian Rhythms.
    Kentish SJ; Vincent AD; Kennaway DJ; Wittert GA; Page AJ
    J Neurosci; 2016 Mar; 36(11):3199-207. PubMed ID: 26985030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse.
    Daly DM; Park SJ; Valinsky WC; Beyak MJ
    J Physiol; 2011 Jun; 589(Pt 11):2857-70. PubMed ID: 21486762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Restricted Feeding Prevents Ablation of Diurnal Rhythms in Gastric Vagal Afferent Mechanosensitivity Observed in High-Fat Diet-Induced Obese Mice.
    Kentish SJ; Hatzinikolas G; Li H; Frisby CL; Wittert GA; Page AJ
    J Neurosci; 2018 May; 38(22):5088-5095. PubMed ID: 29760179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms.
    Imeryüz N; Yeğen BC; Bozkurt A; Coşkun T; Villanueva-Peñacarrillo ML; Ulusoy NB
    Am J Physiol; 1997 Oct; 273(4):G920-7. PubMed ID: 9357836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gastric vagal afferent modulation by leptin is influenced by food intake status.
    Kentish SJ; O'Donnell TA; Isaacs NJ; Young RL; Li H; Harrington AM; Brierley SM; Wittert GA; Blackshaw LA; Page AJ
    J Physiol; 2013 Apr; 591(7):1921-34. PubMed ID: 23266933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary Gamma-Aminobutyric Acid (GABA) Induces Satiation by Enhancing the Postprandial Activation of Vagal Afferent Nerves.
    Nakamura U; Nohmi T; Sagane R; Hai J; Ohbayashi K; Miyazaki M; Yamatsu A; Kim M; Iwasaki Y
    Nutrients; 2022 Jun; 14(12):. PubMed ID: 35745222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective FFA2 Agonism Appears to Act via Intestinal PYY to Reduce Transit and Food Intake but Does Not Improve Glucose Tolerance in Mouse Models.
    Forbes S; Stafford S; Coope G; Heffron H; Real K; Newman R; Davenport R; Barnes M; Grosse J; Cox H
    Diabetes; 2015 Nov; 64(11):3763-71. PubMed ID: 26239054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of capsaicin-sensitive peripheral sensory neurons in anorexic responses to intravenous infusions of cholecystokinin, peptide YY-(3-36), and glucagon-like peptide-1 in rats.
    Reidelberger R; Haver A; Anders K; Apenteng B
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E619-29. PubMed ID: 25117406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraportal administration of DPP-IV inhibitor regulates insulin secretion and food intake mediated by the hepatic vagal afferent nerve in rats.
    Fujiwara K; Gotoh K; Chiba S; Masaki T; Katsuragi I; Kakuma T; Yoshimatsu H
    J Neurochem; 2012 Apr; 121(1):66-76. PubMed ID: 22035323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.
    Kentish SJ; Frisby CL; Kritas S; Li H; Hatzinikolas G; O'Donnell TA; Wittert GA; Page AJ
    PLoS One; 2015; 10(8):e0135892. PubMed ID: 26285043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal afferents mediate early satiation and prevent flavour avoidance learning in response to intraperitoneally infused exendin-4.
    Labouesse MA; Stadlbauer U; Weber E; Arnold M; Langhans W; Pacheco-López G
    J Neuroendocrinol; 2012 Dec; 24(12):1505-16. PubMed ID: 22827554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.