BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34168744)

  • 1. Programmed catalysis within stimuli-responsive mechanically unlocked nanocavities in DNA origami tiles.
    Wang J; Zhou Z; Li Z; Willner I
    Chem Sci; 2020 Oct; 12(1):341-351. PubMed ID: 34168744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active generation of nanoholes in DNA origami scaffolds for programmed catalysis in nanocavities.
    Wang J; Yue L; Li Z; Zhang J; Tian H; Willner I
    Nat Commun; 2019 Oct; 10(1):4963. PubMed ID: 31672967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Catalysis Guided by Nucleic Acid Networks and DNA Nanostructures.
    Ouyang Y; Zhang P; Willner I
    Bioconjug Chem; 2023 Jan; 34(1):51-69. PubMed ID: 35973134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggered Reversible Reconfiguration of G-Quadruplex-Bridged "Domino"-Type Origami Dimers: Application of the Systems for Programmed Catalysis.
    Wang J; Yue L; Wang S; Willner I
    ACS Nano; 2018 Dec; 12(12):12324-12336. PubMed ID: 30427652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNAzyme-Controlled Cleavage of Dimer and Trimer Origami Tiles.
    Wu N; Willner I
    Nano Lett; 2016 Apr; 16(4):2867-72. PubMed ID: 26931508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks.
    Chen WH; Yu X; Cecconello A; Sohn YS; Nechushtai R; Willner I
    Chem Sci; 2017 Aug; 8(8):5769-5780. PubMed ID: 28989617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single and Bilayer Polyacrylamide Hydrogel-Based Microcapsules for the Triggered Release of Loads, Logic Gate Operations, and Intercommunication between Microcapsules.
    Lilienthal S; Fischer A; Liao WC; Cazelles R; Willner I
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31124-31136. PubMed ID: 32551490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-responsive hemin-G-quadruplexes for switchable DNAzyme and enzyme functions.
    Aleman-Garcia MA; Orbach R; Willner I
    Chemistry; 2014 May; 20(19):5619-24. PubMed ID: 24683003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular behavior of DNA origami in higher-order self-assembly.
    Li Z; Liu M; Wang L; Nangreave J; Yan H; Liu Y
    J Am Chem Soc; 2010 Sep; 132(38):13545-52. PubMed ID: 20825190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH-Stimulated Reconfiguration and Structural Isomerization of Origami Dimer and Trimer Systems.
    Wu N; Willner I
    Nano Lett; 2016 Oct; 16(10):6650-6655. PubMed ID: 27586163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns.
    Tikhomirov G; Petersen P; Qian L
    Nature; 2017 Dec; 552(7683):67-71. PubMed ID: 29219965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer-Binding Directed DNA Origami Pattern for Logic Gates.
    Yang J; Jiang S; Liu X; Pan L; Zhang C
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):34054-34060. PubMed ID: 27960418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Building DNA nanostructures for molecular computation, templated assembly, and biological applications.
    Rangnekar A; LaBean TH
    Acc Chem Res; 2014 Jun; 47(6):1778-88. PubMed ID: 24720350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Self-Assembly of Train-Shaped DNA Nanostructures via Catalytic Hairpin Assembly Reactions.
    Xing C; Dai J; Huang Y; Lin Y; Zhang KL; Lu C; Yang H
    Small; 2019 Jul; 15(27):e1901795. PubMed ID: 31120190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bipedal DNA motor that travels back and forth between two DNA origami tiles.
    Liber M; Tomov TE; Tsukanov R; Berger Y; Nir E
    Small; 2015 Feb; 11(5):568-75. PubMed ID: 25236793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triplex DNA Nanostructures: From Basic Properties to Applications.
    Hu Y; Cecconello A; Idili A; Ricci F; Willner I
    Angew Chem Int Ed Engl; 2017 Nov; 56(48):15210-15233. PubMed ID: 28444822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-ion responsive reversible assembly of DNA origami dimers: G-quadruplex induced intermolecular interaction.
    Yang S; Liu W; Nixon R; Wang R
    Nanoscale; 2018 Feb; 10(8):3626-3630. PubMed ID: 29411830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.
    Wang P; Gaitanaros S; Lee S; Bathe M; Shih WM; Ke Y
    J Am Chem Soc; 2016 Jun; 138(24):7733-40. PubMed ID: 27224641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.