BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 34168800)

  • 1. Plasmonic photothermal catalysis for solar-to-fuel conversion: current status and prospects.
    Luo S; Ren X; Lin H; Song H; Ye J
    Chem Sci; 2021 Mar; 12(16):5701-5719. PubMed ID: 34168800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis.
    Xiao JD; Jiang HL
    Acc Chem Res; 2019 Feb; 52(2):356-366. PubMed ID: 30571078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic Coupling Architectures for Enhanced Photocatalysis.
    Liu D; Xue C
    Adv Mater; 2021 Nov; 33(46):e2005738. PubMed ID: 33891777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives.
    Xin Y; Yu K; Zhang L; Yang Y; Yuan H; Li H; Wang L; Zeng J
    Adv Mater; 2021 Aug; 33(32):e2008145. PubMed ID: 34050979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy.
    Nazemi M; El-Sayed MA
    Acc Chem Res; 2021 Dec; 54(23):4294-4304. PubMed ID: 34719918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis.
    Jiang W; Low BQL; Long R; Low J; Loh H; Tang KY; Chai CHT; Zhu H; Zhu H; Li Z; Loh XJ; Xiong Y; Ye E
    ACS Nano; 2023 Mar; 17(5):4193-4229. PubMed ID: 36802513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic catalysis with designer nanoparticles.
    da Silva AGM; Rodrigues TS; Wang J; Camargo PHC
    Chem Commun (Camb); 2022 Feb; 58(13):2055-2074. PubMed ID: 35044391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.
    Long R; Li Y; Song L; Xiong Y
    Small; 2015 Aug; 11(32):3873-89. PubMed ID: 26097101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal-effect dominated plasmonic catalysis on silver nanoislands.
    Kong T; Kang B; Wang W; Deckert-Gaudig T; Zhang Z; Deckert V
    Nanoscale; 2024 Jun; 16(22):10745-10750. PubMed ID: 38738933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient photothermal-assisted photocatalytic hydrogen production over a plasmonic CuNi bimetal cocatalyst.
    Li J; Huang Y; Luo B; Ma L; Jing D
    J Colloid Interface Sci; 2022 Nov; 626():975-984. PubMed ID: 35839678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar-driven conversion of carbon dioxide over nanostructured metal-based catalysts in alternative approaches: Fundamental mechanisms and recent progress.
    Hoang VC; Bui TS; Nguyen HTD; Hoang TT; Rahman G; Le QV; Nguyen DLT
    Environ Res; 2021 Nov; 202():111781. PubMed ID: 34333011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Photocatalysis for CO
    Wang F; Lu Z; Guo H; Zhang G; Li Y; Hu Y; Jiang W; Liu G
    Chemistry; 2023 May; 29(25):e202202716. PubMed ID: 36806292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic harvesting of light energy for Suzuki coupling reactions.
    Wang F; Li C; Chen H; Jiang R; Sun LD; Li Q; Wang J; Yu JC; Yan CH
    J Am Chem Soc; 2013 Apr; 135(15):5588-601. PubMed ID: 23521598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface Plasmon-Assisted Solar Energy Conversion.
    Dodekatos G; Schünemann S; Tüysüz H
    Top Curr Chem; 2016; 371():215-52. PubMed ID: 26092694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.
    Meng X; Liu L; Ouyang S; Xu H; Wang D; Zhao N; Ye J
    Adv Mater; 2016 Aug; 28(32):6781-803. PubMed ID: 27185493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.
    Han C; Quan Q; Chen HM; Sun Y; Xu YJ
    Small; 2017 Apr; 13(14):. PubMed ID: 28151576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.