These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 34168806)
41. Modulation of defects in metal organic gels to enhance anhydrous proton conduction from subzero to moderate temperature. Gao D; Tang J; Zhang F; Wen C; Feng L; Wan C; Qu F; Liang X J Colloid Interface Sci; 2023 Nov; 650(Pt A):19-27. PubMed ID: 37392496 [TBL] [Abstract][Full Text] [Related]
42. Reinvestigation of Na Michalak A; Behara S; M AR ACS Appl Mater Interfaces; 2024 Feb; 16(6):7112-7118. PubMed ID: 38296606 [TBL] [Abstract][Full Text] [Related]
43. Recent Advances in Porous Polymers for Solid-State Rechargeable Lithium Batteries. Zou J; Ben T Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432931 [TBL] [Abstract][Full Text] [Related]
44. Significantly enhanced lithium-ion conductivity of solid-state electrolytes Wang X; Tian L; Tao F; Liu M; Jin S; Liu Z Dalton Trans; 2023 Jul; 52(29):10222-10230. PubMed ID: 37436096 [TBL] [Abstract][Full Text] [Related]
45. A Biodegradable Polyester-Based Polymer Electrolyte for Solid-State Lithium Batteries. Tang C; Xue Z; Weng S; Wang W; Shen H; Xiang Y; Liu L; Peng X Nanomaterials (Basel); 2023 Nov; 13(23):. PubMed ID: 38063723 [TBL] [Abstract][Full Text] [Related]
46. PVDF-HFP/PAN/PDA@LLZTO Composite Solid Electrolyte Enabling Reinforced Safety and Outstanding Low-Temperature Performance for Quasi-Solid-State Lithium Metal Batteries. Wang Y; Chen Z; Wu Y; Li Y; Yue Z; Chen M ACS Appl Mater Interfaces; 2023 May; 15(17):21526-21536. PubMed ID: 37071843 [TBL] [Abstract][Full Text] [Related]
47. Acid-in-Clay Electrolyte for Wide-Temperature-Range and Long-Cycle Proton Batteries. Wang S; Jiang H; Dong Y; Clarkson D; Zhu H; Settens CM; Ren Y; Nguyen T; Han F; Fan W; Kim SY; Zhang J; Xue W; Sandstrom SK; Xu G; Tekoglu E; Li M; Deng S; Liu Q; Greenbaum SG; Ji X; Gao T; Li J Adv Mater; 2022 Jun; 34(23):e2202063. PubMed ID: 35443084 [TBL] [Abstract][Full Text] [Related]
48. Quasi-Solid-State Electrolyte Synthesized Using a Thiol-Ene Click Chemistry for Rechargeable Lithium Metal Batteries with Enhanced Safety. Park S; Jeong B; Lim DA; Lee CH; Ahn KH; Lee JH; Kim DW ACS Appl Mater Interfaces; 2020 Apr; 12(17):19553-19562. PubMed ID: 32251586 [TBL] [Abstract][Full Text] [Related]
49. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. Wang J; Hao J; Duan C; Wang X; Wang K; Ma C Small; 2022 Feb; 18(5):e2104508. PubMed ID: 34837307 [TBL] [Abstract][Full Text] [Related]
50. Isotropic Anhydrous Superprotonic Conductivity Cooperated with Installed Imidazolium Molecular Motions in a 3D Hydrogen-Bonded Phosphate Network. Dekura S; Mizuno M; Mori H Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202212872. PubMed ID: 36250811 [TBL] [Abstract][Full Text] [Related]
51. Metal-Organic Network-Forming Glasses. Ma N; Horike S Chem Rev; 2022 Feb; 122(3):4163-4203. PubMed ID: 35044749 [TBL] [Abstract][Full Text] [Related]
52. Perfluoroalkyl-Functionalized Covalent Organic Frameworks with Superhydrophobicity for Anhydrous Proton Conduction. Wu X; Hong YL; Xu B; Nishiyama Y; Jiang W; Zhu J; Zhang G; Kitagawa S; Horike S J Am Chem Soc; 2020 Aug; 142(33):14357-14364. PubMed ID: 32787252 [TBL] [Abstract][Full Text] [Related]
53. Acidic Groups Functionalized Carbon Dots Capping Channels of a Proton Conductive Metal-Organic Framework by Coordination Bonds to Improve the Water-Retention Capacity and Boost Proton Conduction. Zhang J; Zhang R; Liu Y; Kong YR; Luo HB; Zou Y; Zhai L; Ren XM ACS Appl Mater Interfaces; 2021 Dec; 13(50):60084-60091. PubMed ID: 34889608 [TBL] [Abstract][Full Text] [Related]
54. Thermal Conductive 2D Boron Nitride for High-Performance All-Solid-State Lithium-Sulfur Batteries. Yin X; Wang L; Kim Y; Ding N; Kong J; Safanama D; Zheng Y; Xu J; Repaka DVM; Hippalgaonkar K; Lee SW; Adams S; Zheng GW Adv Sci (Weinh); 2020 Oct; 7(19):2001303. PubMed ID: 33042749 [TBL] [Abstract][Full Text] [Related]
56. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584 [TBL] [Abstract][Full Text] [Related]
57. Solid state ionics: a Japan perspective. Yamamoto O Sci Technol Adv Mater; 2017; 18(1):504-527. PubMed ID: 28804526 [TBL] [Abstract][Full Text] [Related]
58. High-Performance All-Solid-State Polymer Electrolyte with Controllable Conductivity Pathway Formed by Self-Assembly of Reactive Discogen and Immobilized via a Facile Photopolymerization for a Lithium-Ion Battery. Wang S; Liu X; Wang A; Wang Z; Chen J; Zeng Q; Jiang X; Zhou H; Zhang L ACS Appl Mater Interfaces; 2018 Aug; 10(30):25273-25284. PubMed ID: 29975039 [TBL] [Abstract][Full Text] [Related]
59. An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries. Kang TW; Lee JH; Lee J; Park JH; Shin JH; Ju JM; Lee H; Lee SU; Kim JH Adv Mater; 2023 Jul; 35(30):e2301308. PubMed ID: 37068790 [TBL] [Abstract][Full Text] [Related]
60. Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries. Qiao Y; Zeng X; Wang H; Long J; Tian Y; Lan J; Yu Y; Yang X Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984123 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]