These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34168840)

  • 41. Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification.
    Beresini MH; Liu Y; Dawes TD; Clark KR; Orren L; Schmidt S; Turincio R; Jones SW; Rodriguez RA; Thana P; Hascall D; Gross DP; Skelton NJ
    J Biomol Screen; 2014 Jun; 19(5):758-70. PubMed ID: 24518067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lean-Docking: Exploiting Ligands' Predicted Docking Scores to Accelerate Molecular Docking.
    Berenger F; Kumar A; Zhang KYJ; Yamanishi Y
    J Chem Inf Model; 2021 May; 61(5):2341-2352. PubMed ID: 33861591
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Complementarity between in silico and biophysical screening approaches in fragment-based lead discovery against the A(2A) adenosine receptor.
    Chen D; Ranganathan A; IJzerman AP; Siegal G; Carlsson J
    J Chem Inf Model; 2013 Oct; 53(10):2701-14. PubMed ID: 23971943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applying DEKOIS 2.0 in structure-based virtual screening to probe the impact of preparation procedures and score normalization.
    Ibrahim TM; Bauer MR; Boeckler FM
    J Cheminform; 2015; 7():21. PubMed ID: 26034510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review.
    Achary PGR
    Mini Rev Med Chem; 2020; 20(14):1375-1388. PubMed ID: 32348219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Teaching an Old Dog New Tricks: Strategies That Improve Early Recognition in Similarity-Based Virtual Screening.
    Liu R; AbdulHameed MDM; Wallqvist A
    Front Chem; 2019; 7():701. PubMed ID: 31709231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MO-MEMES: A method for accelerating virtual screening using multi-objective Bayesian optimization.
    Mehta S; Goel M; Priyakumar UD
    Front Med (Lausanne); 2022; 9():916481. PubMed ID: 36213671
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Learning and Structure-Based Virtual Screening for Drug Discovery against NEK7: A Novel Target for the Treatment of Cancer.
    Aziz M; Ejaz SA; Zargar S; Akhtar N; Aborode AT; A Wani T; Batiha GE; Siddique F; Alqarni M; Akintola AA
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807344
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Virtual Screening Strategy to Identify Retinoic Acid-Related Orphan Receptor γt Modulators.
    Jokinen EM; Niemeläinen M; Kurkinen ST; Lehtonen JV; Lätti S; Postila PA; Pentikäinen OT; Niinivehmas SP
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110655
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Virtual screening for the discovery of bioactive natural products.
    Rollinger JM; Stuppner H; Langer T
    Prog Drug Res; 2008; 65():211, 213-49. PubMed ID: 18084917
    [TBL] [Abstract][Full Text] [Related]  

  • 51. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of high throughput virtual screening by combining shape-matching and docking methods.
    Lee HS; Choi J; Kufareva I; Abagyan R; Filikov A; Yang Y; Yoon S
    J Chem Inf Model; 2008 Mar; 48(3):489-97. PubMed ID: 18302357
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Charting a Path to Success in Virtual Screening.
    Forli S
    Molecules; 2015 Oct; 20(10):18732-58. PubMed ID: 26501243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A machine learning model trained on a high-throughput antibacterial screen increases the hit rate of drug discovery.
    Rahman ASMZ; Liu C; Sturm H; Hogan AM; Davis R; Hu P; Cardona ST
    PLoS Comput Biol; 2022 Oct; 18(10):e1010613. PubMed ID: 36228001
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-based virtual screening to identify novel carnitine acetyltransferase activators.
    Ombrato R; Console L; Righino B; Indiveri C; Arduini A; De Rosa MC
    J Mol Graph Model; 2020 Nov; 100():107692. PubMed ID: 32759041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Receptor-Based Virtual Screening of Large Libraries in a Multi-Level In Silico Approach.
    Vieira TF; Sousa SF
    Methods Mol Biol; 2023; 2652():261-267. PubMed ID: 37093481
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrating sampling techniques and inverse virtual screening: toward the discovery of artificial peptide-based receptors for ligands.
    Pérez GM; Salomón LA; Montero-Cabrera LA; de la Vega JM; Mascini M
    Mol Divers; 2016 May; 20(2):421-38. PubMed ID: 26553204
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Virtual screening strategies in drug discovery.
    McInnes C
    Curr Opin Chem Biol; 2007 Oct; 11(5):494-502. PubMed ID: 17936059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening.
    Mohammad T; Mathur Y; Hassan MI
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33105480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fragment-based drug design: computational & experimental state of the art.
    Hoffer L; Renaud JP; Horvath D
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):500-20. PubMed ID: 21521152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.