BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34169064)

  • 1. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering.
    Nulty J; Burdis R; Kelly DJ
    Front Bioeng Biotechnol; 2021; 9():661989. PubMed ID: 34169064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering High-Quality Cartilage Microtissues Using Hydrocortisone Functionalized Microwells.
    Burdis R; Kronemberger GS; Kelly DJ
    Tissue Eng Part C Methods; 2023 Apr; 29(4):121-133. PubMed ID: 36719783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues.
    Burdis R; Kelly DJ
    Acta Biomater; 2021 May; 126():1-14. PubMed ID: 33711529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects.
    Nulty J; Freeman FE; Browe DC; Burdis R; Ahern DP; Pitacco P; Lee YB; Alsberg E; Kelly DJ
    Acta Biomater; 2021 May; 126():154-169. PubMed ID: 33705989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial patterning of phenotypically distinct microtissues to engineer osteochondral grafts for biological joint resurfacing.
    Burdis R; Chariyev-Prinz F; Browe DC; Freeman FE; Nulty J; McDonnell EE; Eichholz KF; Wang B; Brama P; Kelly DJ
    Biomaterials; 2022 Oct; 289():121750. PubMed ID: 36084483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting of biomimetic self-organised cartilage with a supporting joint fixation device.
    Burdis R; Chariyev-Prinz F; Kelly DJ
    Biofabrication; 2021 Nov; 14(1):. PubMed ID: 34825656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues.
    Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR
    Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of Developmentally Inspired Templates for Whole Bone Organ Engineering.
    Daly AC; Cunniffe GM; Sathy BN; Jeon O; Alsberg E; Kelly DJ
    Adv Healthc Mater; 2016 Sep; 5(18):2353-62. PubMed ID: 27281607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed microchannel networks to direct vascularisation during endochondral bone repair.
    Daly AC; Pitacco P; Nulty J; Cunniffe GM; Kelly DJ
    Biomaterials; 2018 Apr; 162():34-46. PubMed ID: 29432987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone marrow-derived stem/stromal cells (BMSC) 3D microtissues cultured in BMP-2 supplemented osteogenic induction medium are prone to adipogenesis.
    Futrega K; Mosaad E; Chambers K; Lott WB; Clements J; Doran MR
    Cell Tissue Res; 2018 Dec; 374(3):541-553. PubMed ID: 30136155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for manufacture and cryopreservation of cartilage microtissues.
    Shajib MS; Futrega K; Franco RAG; McKenna E; Guillesser B; Klein TJ; Crawford RW; Doran MR
    J Tissue Eng; 2023; 14():20417314231176901. PubMed ID: 37529249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects.
    Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ
    Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotics-Driven Manufacturing of Cartilaginous Microtissues for Skeletal Tissue Engineering Applications.
    Decoene I; Nasello G; Madeiro de Costa RF; Nilsson Hall G; Pastore A; Van Hoven I; Ribeiro Viseu S; Verfaillie C; Geris L; Luyten FP; Papantoniou I
    Stem Cells Transl Med; 2024 Mar; 13(3):278-292. PubMed ID: 38217535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo.
    Hall GN; Tam WL; Andrikopoulos KS; Casas-Fraile L; Voyiatzis GA; Geris L; Luyten FP; Papantoniou I
    Biomaterials; 2021 Jun; 273():120820. PubMed ID: 33872857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal Enzymatic Treatment to Enhance the Remodeling of Multiple Cartilage Microtissues into a Structurally Organized Tissue.
    Burdis R; Gallostra XB; Kelly DJ
    Adv Healthc Mater; 2024 Jan; 13(3):e2300174. PubMed ID: 37858935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gremlin-1 Suppresses Hypertrophy of Engineered Cartilage
    Díaz-Payno PJ; Browe DC; Freeman FE; Nulty J; Burdis R; Kelly DJ
    Tissue Eng Part A; 2022 Aug; 28(15-16):724-736. PubMed ID: 35297694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes.
    Bardsley K; Kwarciak A; Freeman C; Brook I; Hatton P; Crawford A
    Biomaterials; 2017 Jan; 112():313-323. PubMed ID: 27770634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo.
    Freeman FE; Allen AB; Stevens HY; Guldberg RE; McNamara LM
    Stem Cell Res Ther; 2015 Nov; 6():218. PubMed ID: 26541817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
    Levato R; Webb WR; Otto IA; Mensinga A; Zhang Y; van Rijen M; van Weeren R; Khan IM; Malda J
    Acta Biomater; 2017 Oct; 61():41-53. PubMed ID: 28782725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.