BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34169064)

  • 21. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids.
    De Moor L; Fernandez S; Vercruysse C; Tytgat L; Asadian M; De Geyter N; Van Vlierberghe S; Dubruel P; Declercq H
    Front Bioeng Biotechnol; 2020; 8():484. PubMed ID: 32523941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration.
    Yin H; Wang Y; Sun X; Cui G; Sun Z; Chen P; Xu Y; Yuan X; Meng H; Xu W; Wang A; Guo Q; Lu S; Peng J
    Acta Biomater; 2018 Sep; 77():127-141. PubMed ID: 30030172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaffold Free Microtissue Formation for Enhanced Cartilage Repair.
    De Moor L; Beyls E; Declercq H
    Ann Biomed Eng; 2020 Jan; 48(1):298-311. PubMed ID: 31451988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The potential of 3-dimensional construct engineered from poly(lactic-co-glycolic acid)/fibrin hybrid scaffold seeded with bone marrow mesenchymal stem cells for in vitro cartilage tissue engineering.
    Abdul Rahman R; Mohamad Sukri N; Md Nazir N; Ahmad Radzi MA; Zulkifly AH; Che Ahmad A; Hashi AA; Abdul Rahman S; Sha'ban M
    Tissue Cell; 2015 Aug; 47(4):420-30. PubMed ID: 26100682
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation of Assemblable Chondral and Subchondral Bone Microtissues for Osteochondral Tissue Engineering.
    Xia P; Yan S; Li G; Yin J
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12089-12105. PubMed ID: 35244384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward 3D Bioprinting of Osseous Tissue of Predefined Shape Using Single-Matrix Cell-Bioink Constructs.
    Gu Y; Pigeot S; Ahrens L; Tribukait-Riemenschneider F; Sarem M; Wolf F; García-García A; Barbero A; Martin I; Shastri VP
    Adv Healthc Mater; 2023 Apr; 12(9):e2202550. PubMed ID: 36527264
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation.
    Sheehy EJ; Vinardell T; Toner ME; Buckley CT; Kelly DJ
    PLoS One; 2014; 9(3):e90716. PubMed ID: 24595316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofabrication of spatially organised tissues by directing the growth of cellular spheroids within 3D printed polymeric microchambers.
    Daly AC; Kelly DJ
    Biomaterials; 2019 Mar; 197():194-206. PubMed ID: 30660995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aspiration-assisted bioprinting of co-cultured osteogenic spheroids for bone tissue engineering.
    Heo DN; Ayan B; Dey M; Banerjee D; Wee H; Lewis GS; Ozbolat IT
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33059343
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled Dual Growth Factor Delivery From Microparticles Incorporated Within Human Bone Marrow-Derived Mesenchymal Stem Cell Aggregates for Enhanced Bone Tissue Engineering via Endochondral Ossification.
    Dang PN; Dwivedi N; Phillips LM; Yu X; Herberg S; Bowerman C; Solorio LD; Murphy WL; Alsberg E
    Stem Cells Transl Med; 2016 Feb; 5(2):206-17. PubMed ID: 26702127
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using the Microwell-mesh to culture microtissues in vitro and as a carrier to implant microtissues in vivo into mice.
    Monterosso ME; Futrega K; Lott WB; Vela I; Williams ED; Doran MR
    Sci Rep; 2021 Mar; 11(1):5118. PubMed ID: 33664329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An endochondral ossification approach to early stage bone repair: Use of tissue-engineered hypertrophic cartilage constructs as primordial templates for weight-bearing bone repair.
    Matsiko A; Thompson EM; Lloyd-Griffith C; Cunniffe GM; Vinardell T; Gleeson JP; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2147-e2150. PubMed ID: 29327428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering.
    Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ
    Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multimodular vascularized bone construct comprised of vasculogenic and osteogenic microtissues.
    Schott NG; Vu H; Stegemann JP
    Biotechnol Bioeng; 2022 Nov; 119(11):3284-3296. PubMed ID: 35922969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fat-Derived Stromal Vascular Fraction Cells Enhance the Bone-Forming Capacity of Devitalized Engineered Hypertrophic Cartilage Matrix.
    Todorov A; Kreutz M; Haumer A; Scotti C; Barbero A; Bourgine PE; Scherberich A; Jaquiery C; Martin I
    Stem Cells Transl Med; 2016 Dec; 5(12):1684-1694. PubMed ID: 27460849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In Vitro Mineralisation of Tissue-Engineered Cartilage Reduces Endothelial Cell Migration, Proliferation and Tube Formation.
    Ji E; Leijsten L; Witte-Bouma J; Rouchon A; Di Maggio N; Banfi A; van Osch GJVM; Farrell E; Lolli A
    Cells; 2023 Apr; 12(8):. PubMed ID: 37190110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment.
    Zhu J; Luo Q; Cao T; Yang G; Xiao L
    Regen Biomater; 2024; 11():rbae064. PubMed ID: 38903559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modular Tissue Assembly Strategies for Biofabrication of Engineered Cartilage.
    Schon BS; Hooper GJ; Woodfield TB
    Ann Biomed Eng; 2017 Jan; 45(1):100-114. PubMed ID: 27073109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyaluronic acid hydrogels support to generate integrated bone formation through endochondral ossification in vivo using mesenchymal stem cells.
    Yamazaki S; Hirayama R; Ikeda Y; Iseki S; Yoda T; Ikeda MA
    PLoS One; 2023; 18(2):e0281345. PubMed ID: 36730328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.