These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34169064)

  • 41. Engineering bone-forming biohybrid sheets through the integration of melt electrowritten membranes and cartilaginous microspheroids.
    Hall GN; Chandrakar A; Pastore A; Ioannidis K; Moisley K; Cirstea M; Geris L; Moroni L; Luyten FP; Wieringa P; Papantoniou I
    Acta Biomater; 2023 Jul; 165():111-124. PubMed ID: 36283613
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering.
    Luo C; Fang H; Zhou M; Li J; Zhang X; Liu S; Zhou C; Hou J; He H; Sun J; Wang Z
    Theranostics; 2019; 9(16):4663-4677. PubMed ID: 31367248
    [No Abstract]   [Full Text] [Related]  

  • 43. Impact of modified gelatin on valvular microtissues.
    Roosens A; Handoyo YP; Dubruel P; Declercq H
    J Tissue Eng Regen Med; 2019 May; 13(5):771-784. PubMed ID: 30770648
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-step harvest and delivery of micropatterned cell sheets mimicking the multi-cellular microenvironment of vascularized tissue.
    Kim SJ; Lee S; Kim C; Shin H
    Acta Biomater; 2021 Sep; 132():176-187. PubMed ID: 33571713
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofabrication of injectable fibrin microtissues for minimally-invasive therapies: application of surfactants.
    Annamalai RT; Naik TN; Prout HP; Putnam AJ; Stegemann JP
    Biomed Mater; 2018 Apr; 13(4):045005. PubMed ID: 29536947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering.
    Langenbach F; Naujoks C; Smeets R; Berr K; Depprich R; Kübler N; Handschel J
    Clin Oral Investig; 2013 Jan; 17(1):9-17. PubMed ID: 22695872
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering cartilage or endochondral bone: a comparison of different naturally derived hydrogels.
    Sheehy EJ; Mesallati T; Vinardell T; Kelly DJ
    Acta Biomater; 2015 Feb; 13():245-53. PubMed ID: 25463500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tomographic volumetric bioprinting of heterocellular bone-like tissues in seconds.
    Gehlen J; Qiu W; Schädli GN; Müller R; Qin XH
    Acta Biomater; 2023 Jan; 156():49-60. PubMed ID: 35718102
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing.
    Cunniffe GM; Vinardell T; Murphy JM; Thompson EM; Matsiko A; O'Brien FJ; Kelly DJ
    Acta Biomater; 2015 Sep; 23():82-90. PubMed ID: 26038199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modular, Vascularized Hypertrophic Cartilage Constructs for Bone Tissue Engineering Applications.
    Schott NG; Kaur G; Coleman R; Stegemann JP
    bioRxiv; 2024 Mar; ():. PubMed ID: 38464155
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional tissue-engineered microtissue formed by self-aggregation of cells for peripheral nerve regeneration.
    Zhang J; Li C; Meng F; Guan Y; Zhang T; Yang B; Ren Z; Liu X; Li D; Zhao J; Zhao J; Wang Y; Peng J
    Stem Cell Res Ther; 2022 Jan; 13(1):3. PubMed ID: 35012663
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering of a functional bone organ through endochondral ossification.
    Scotti C; Piccinini E; Takizawa H; Todorov A; Bourgine P; Papadimitropoulos A; Barbero A; Manz MG; Martin I
    Proc Natl Acad Sci U S A; 2013 Mar; 110(10):3997-4002. PubMed ID: 23401508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineering hypertrophic cartilage grafts from lipoaspirate for critical-sized calvarial bone defect reconstruction: An adipose tissue-based developmental engineering approach.
    Huang RL; Fu R; Yan Y; Liu C; Yang J; Xie Y; Li Q
    Bioeng Transl Med; 2022 Sep; 7(3):e10312. PubMed ID: 36176620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stirred culture of cartilaginous microtissues promotes chondrogenic hypertrophy through exposure to intermittent shear stress.
    Loverdou N; Cuvelier M; Nilsson Hall G; Christiaens AS; Decoene I; Bernaerts K; Smeets B; Ramon H; Luyten FP; Geris L; Papantoniou I
    Bioeng Transl Med; 2023 May; 8(3):e10468. PubMed ID: 37206246
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fiber Reinforced Cartilage ECM Functionalized Bioinks for Functional Cartilage Tissue Engineering.
    Rathan S; Dejob L; Schipani R; Haffner B; Möbius ME; Kelly DJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1801501. PubMed ID: 30624015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-throughput fabrication of vascularized adipose microtissues for 3D bioprinting.
    Benmeridja L; De Moor L; De Maere E; Vanlauwe F; Ryx M; Tytgat L; Vercruysse C; Dubruel P; Van Vlierberghe S; Blondeel P; Declercq H
    J Tissue Eng Regen Med; 2020 Jun; 14(6):840-854. PubMed ID: 32336037
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralization potential of mesenchymal stem cells in vitro while also allowing for vessel formation.
    Freeman FE; Haugh MG; McNamara LM
    Tissue Eng Part A; 2015 Apr; 21(7-8):1320-32. PubMed ID: 25588588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Treatment of osteochondral defects in the rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots.
    Berninger MT; Wexel G; Rummeny EJ; Imhoff AB; Anton M; Henning TD; Vogt S
    J Vis Exp; 2013 May; (75):e4423. PubMed ID: 23728213
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.
    Yin H; Wang Y; Sun Z; Sun X; Xu Y; Li P; Meng H; Yu X; Xiao B; Fan T; Wang Y; Xu W; Wang A; Guo Q; Peng J; Lu S
    Acta Biomater; 2016 Mar; 33():96-109. PubMed ID: 26802442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.