These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 3416946)
1. Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Hening W; Favilla M; Ghez C Exp Brain Res; 1988; 71(1):116-28. PubMed ID: 3416946 [TBL] [Abstract][Full Text] [Related]
2. Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Favilla M; Hening W; Ghez C Exp Brain Res; 1989; 75(2):280-94. PubMed ID: 2721609 [TBL] [Abstract][Full Text] [Related]
3. Trajectory control in targeted force impulses. IV. Influences of choice, prior experience and urgency. Hening W; Vicario D; Ghez C Exp Brain Res; 1988; 71(1):103-15. PubMed ID: 3416945 [TBL] [Abstract][Full Text] [Related]
4. Gradual specification of response amplitude in human tracking performance. Ghez C; Hening W; Favilla M Brain Behav Evol; 1989; 33(2-3):69-74. PubMed ID: 2758304 [TBL] [Abstract][Full Text] [Related]
5. Trajectory control in targeted force impulses. II. Pulse height control. Gordon J; Ghez C Exp Brain Res; 1987; 67(2):241-52. PubMed ID: 3622687 [TBL] [Abstract][Full Text] [Related]
6. Trajectory control in targeted force impulses. VII. Independent setting of amplitude and direction in response preparation. Favilla M; Gordon J; Hening W; Ghez C Exp Brain Res; 1990; 79(3):530-8. PubMed ID: 2340872 [TBL] [Abstract][Full Text] [Related]
7. Discrete and continuous planning of hand movements and isometric force trajectories. Ghez C; Favilla M; Ghilardi MF; Gordon J; Bermejo R; Pullman S Exp Brain Res; 1997 Jun; 115(2):217-33. PubMed ID: 9224851 [TBL] [Abstract][Full Text] [Related]
8. Trajectory control in targeted force impulses. III. Compensatory adjustments for initial errors. Gordon J; Ghez C Exp Brain Res; 1987; 67(2):253-69. PubMed ID: 3622688 [TBL] [Abstract][Full Text] [Related]
9. Trajectory control in targeted force impulses. I. Role of opposing muscles. Ghez C; Gordon J Exp Brain Res; 1987; 67(2):225-40. PubMed ID: 3622686 [TBL] [Abstract][Full Text] [Related]
10. The control of rapid limb movement in the cat. IV. Updating of ongoing isometric responses. Vicario DS; Ghez C Exp Brain Res; 1984; 55(1):134-44. PubMed ID: 6540198 [TBL] [Abstract][Full Text] [Related]
12. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy. Cantagallo A; Di Russo F; Favilla M; Zoccolotti P J Neurotrauma; 2015 Apr; 32(8):563-70. PubMed ID: 25273979 [TBL] [Abstract][Full Text] [Related]
13. Parametric coupling and generalized decoupling revealed by concurrent and successive isometric contractions of distal muscles. Heuer H; Spijkers W; Steglich C; Kleinsorge T Acta Psychol (Amst); 2002 Sep; 111(2):205-42. PubMed ID: 12227436 [TBL] [Abstract][Full Text] [Related]
14. Neural processing in a three-choice reaction-time task: a study using cerebral evoked-potentials and single-trial analysis in normal humans. Ortiz TA; Goodin DS; Aminoff MJ J Neurophysiol; 1993 May; 69(5):1499-512. PubMed ID: 8509828 [TBL] [Abstract][Full Text] [Related]
16. Relation of repetition effect and response programming in a speeded choice task. Ito M Percept Mot Skills; 1999 Apr; 88(2):503-14. PubMed ID: 10483644 [TBL] [Abstract][Full Text] [Related]
17. Effect of combined variation of force amplitude and rate of force development on the modulation characteristics of muscle activation during rapid isometric aiming force production. Park JH; Stelmach GE Exp Brain Res; 2006 Jan; 168(3):337-47. PubMed ID: 16328255 [TBL] [Abstract][Full Text] [Related]
18. Bimanual coupling during the specification of isometric forces. Steglich C; Heuer H; Spijkers W; Kleinsorge T Exp Brain Res; 1999 Nov; 129(2):302-16. PubMed ID: 10591904 [TBL] [Abstract][Full Text] [Related]