BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 34169568)

  • 21. Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA.
    Bello M; Martínez-Muñoz A; Balbuena-Rebolledo I
    J Mol Model; 2020 Nov; 26(12):340. PubMed ID: 33184722
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing a SARS-CoV-2 main protease binding prediction random forest model for drug repurposing for COVID-19 treatment.
    Liu J; Xu L; Guo W; Li Z; Khan MKH; Ge W; Patterson TA; Hong H
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1927-1936. PubMed ID: 37997891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations.
    Vishvakarma VK; Singh MB; Jain P; Kumari K; Singh P
    Amino Acids; 2022 Feb; 54(2):205-213. PubMed ID: 34807314
    [TBL] [Abstract][Full Text] [Related]  

  • 24.
    Iype E; Pillai U J; Kumar I; Gaastra-Nedea SV; Subramanian R; Saha RN; Dutta M
    J Biomol Struct Dyn; 2022; 40(23):12800-12811. PubMed ID: 34550861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study.
    Refaey RH; El-Ashrey MK; Nissan YM
    Virology; 2021 Feb; 554():48-54. PubMed ID: 33370597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes.
    Li M; Liu X; Zhang S; Liang S; Zhang Q; Chen J
    Phys Chem Chem Phys; 2022 Sep; 24(36):22129-22143. PubMed ID: 36082845
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Raltegravir, Indinavir, Tipranavir, Dolutegravir, and Etravirine against main protease and RNA-dependent RNA polymerase of SARS-CoV-2: A molecular docking and drug repurposing approach.
    Indu P; Rameshkumar MR; Arunagirinathan N; Al-Dhabi NA; Valan Arasu M; Ignacimuthu S
    J Infect Public Health; 2020 Dec; 13(12):1856-1861. PubMed ID: 33168456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. QSAR Modeling of SARS-CoV M
    Alves VM; Bobrowski T; Melo-Filho CC; Korn D; Auerbach S; Schmitt C; Muratov EN; Tropsha A
    Mol Inform; 2021 Jan; 40(1):e2000113. PubMed ID: 33405340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease.
    Choudhury C
    J Biomol Struct Dyn; 2021 Jul; 39(10):3733-3746. PubMed ID: 32452282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-based identification of SARS-CoV-2 main protease inhibitors from anti-viral specific chemical libraries: an exhaustive computational screening approach.
    Bhowmick S; Saha A; Osman SM; Alasmary FA; Almutairi TM; Islam MA
    Mol Divers; 2021 Aug; 25(3):1979-1997. PubMed ID: 33844135
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repurposing drug molecule against SARS-Cov-2 (COVID-19) through molecular docking and dynamics: a quick approach to pick FDA-approved drugs.
    Farhat N; Khan AU
    J Mol Model; 2021 Oct; 27(11):312. PubMed ID: 34601658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A computational drug repurposing approach in identifying the cephalosporin antibiotic and anti-hepatitis C drug derivatives for COVID-19 treatment.
    Kumar R; Kumar V; Lee KW
    Comput Biol Med; 2021 Mar; 130():104186. PubMed ID: 33360831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery.
    Ray AK; Sen Gupta PS; Panda SK; Biswal S; Bhattacharya U; Rana MK
    Comput Biol Med; 2022 Mar; 142():105183. PubMed ID: 34986429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19.
    Joshi T; Sharma P; Joshi T; Pundir H; Mathpal S; Chandra S
    Mol Divers; 2021 Aug; 25(3):1665-1677. PubMed ID: 32602074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A molecular modelling approach for identifying antiviral selenium-containing heterocyclic compounds that inhibit the main protease of SARS-CoV-2: an in silico investigation.
    Rakib A; Nain Z; Sami SA; Mahmud S; Islam A; Ahmed S; Siddiqui ABF; Babu SMOF; Hossain P; Shahriar A; Nainu F; Emran TB; Simal-Gandara J
    Brief Bioinform; 2021 Mar; 22(2):1476-1498. PubMed ID: 33623995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-Based Virtual Screening to Discover Potential Lead Molecules for the SARS-CoV-2 Main Protease.
    Gahlawat A; Kumar N; Kumar R; Sandhu H; Singh IP; Singh S; Sjöstedt A; Garg P
    J Chem Inf Model; 2020 Dec; 60(12):5781-5793. PubMed ID: 32687345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease.
    Günther S; Reinke PYA; Fernández-García Y; Lieske J; Lane TJ; Ginn HM; Koua FHM; Ehrt C; Ewert W; Oberthuer D; Yefanov O; Meier S; Lorenzen K; Krichel B; Kopicki JD; Gelisio L; Brehm W; Dunkel I; Seychell B; Gieseler H; Norton-Baker B; Escudero-Pérez B; Domaracky M; Saouane S; Tolstikova A; White TA; Hänle A; Groessler M; Fleckenstein H; Trost F; Galchenkova M; Gevorkov Y; Li C; Awel S; Peck A; Barthelmess M; Schlünzen F; Lourdu Xavier P; Werner N; Andaleeb H; Ullah N; Falke S; Srinivasan V; França BA; Schwinzer M; Brognaro H; Rogers C; Melo D; Zaitseva-Doyle JJ; Knoska J; Peña-Murillo GE; Mashhour AR; Hennicke V; Fischer P; Hakanpää J; Meyer J; Gribbon P; Ellinger B; Kuzikov M; Wolf M; Beccari AR; Bourenkov G; von Stetten D; Pompidor G; Bento I; Panneerselvam S; Karpics I; Schneider TR; Garcia-Alai MM; Niebling S; Günther C; Schmidt C; Schubert R; Han H; Boger J; Monteiro DCF; Zhang L; Sun X; Pletzer-Zelgert J; Wollenhaupt J; Feiler CG; Weiss MS; Schulz EC; Mehrabi P; Karničar K; Usenik A; Loboda J; Tidow H; Chari A; Hilgenfeld R; Uetrecht C; Cox R; Zaliani A; Beck T; Rarey M; Günther S; Turk D; Hinrichs W; Chapman HN; Pearson AR; Betzel C; Meents A
    Science; 2021 May; 372(6542):642-646. PubMed ID: 33811162
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Drug Repurposing to Identify Nilotinib as a Potential SARS-CoV-2 Main Protease Inhibitor: Insights from a Computational and
    Banerjee S; Yadav S; Banerjee S; Fakayode SO; Parvathareddy J; Reichard W; Surendranathan S; Mahmud F; Whatcott R; Thammathong J; Meibohm B; Miller DD; Jonsson CB; Dubey KD
    J Chem Inf Model; 2021 Nov; 61(11):5469-5483. PubMed ID: 34666487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease.
    Forrestall KL; Burley DE; Cash MK; Pottie IR; Darvesh S
    Chem Biol Interact; 2021 Feb; 335():109348. PubMed ID: 33278462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants -
    Shree P; Mishra P; Selvaraj C; Singh SK; Chaube R; Garg N; Tripathi YB
    J Biomol Struct Dyn; 2022 Jan; 40(1):190-203. PubMed ID: 32851919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.