BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 34170197)

  • 1. Deep learning-based automated left ventricular ejection fraction assessment using 2-D echocardiography.
    Liu X; Fan Y; Li S; Chen M; Li M; Hau WK; Zhang H; Xu L; Lee AP
    Am J Physiol Heart Circ Physiol; 2021 Aug; 321(2):H390-H399. PubMed ID: 34170197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Reliability of Automated Three-Dimensional Echocardiography-HeartModel
    Naser N; Stankovic I; Neskovic A
    Med Arch; 2022 Aug; 76(4):259-266. PubMed ID: 36313951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can global longitudinal strain predict reduced left ventricular ejection fraction in daily echocardiographic practice?
    Benyounes N; Lang S; Soulat-Dufour L; Obadia M; Gout O; Chevalier G; Cohen A
    Arch Cardiovasc Dis; 2015 Jan; 108(1):50-6. PubMed ID: 25530159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Left ventricular systolic function assessment in secondary mitral regurgitation: left ventricular ejection fraction vs. speckle tracking global longitudinal strain.
    Kamperidis V; Marsan NA; Delgado V; Bax JJ
    Eur Heart J; 2016 Mar; 37(10):811-6. PubMed ID: 26685140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography.
    Zeng Y; Tsui PH; Pang K; Bin G; Li J; Lv K; Wu X; Wu S; Zhou Z
    Ultrasonics; 2023 Jan; 127():106855. PubMed ID: 36206610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Video-Based Deep Learning for Automated Assessment of Left Ventricular Ejection Fraction in Pediatric Patients.
    Reddy CD; Lopez L; Ouyang D; Zou JY; He B
    J Am Soc Echocardiogr; 2023 May; 36(5):482-489. PubMed ID: 36754100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of new automated transthoracic three-dimensional echocardiographic software for left ventricular volumes and function assessment in routine clinical practice: Comparison with 3 Tesla cardiac magnetic resonance.
    Levy F; Dan Schouver E; Iacuzio L; Civaia F; Rusek S; Dommerc C; Marechaux S; Dor V; Tribouilloy C; Dreyfus G
    Arch Cardiovasc Dis; 2017 Nov; 110(11):580-589. PubMed ID: 28566200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of left ventricular systolic and diastolic abnormalities in patients with hypertrophic cardiomyopathy using real-time three-dimensional echocardiography and two-dimensional speckle tracking imaging.
    Huang X; Yue Y; Wang Y; Deng Y; Liu L; Di Y; Sun S; Chen D; Fan L; Cao J
    Cardiovasc Ultrasound; 2018 Oct; 16(1):23. PubMed ID: 30285887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the 16-Segment Regional Wall Motion Scoring Index and biplane Simpson's rule for the calculation of left ventricular ejection fraction: a comparison with cardiac magnetic resonance imaging.
    Duncan RF; Dundon BK; Nelson AJ; Pemberton J; Williams K; Worthley MI; Zaman A; Thomas H; Worthley SG
    Echocardiography; 2011 Jul; 28(6):597-604. PubMed ID: 21718352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transthoracic 3D Echocardiographic Left Heart Chamber Quantification Using an Automated Adaptive Analytics Algorithm.
    Tsang W; Salgo IS; Medvedofsky D; Takeuchi M; Prater D; Weinert L; Yamat M; Mor-Avi V; Patel AR; Lang RM
    JACC Cardiovasc Imaging; 2016 Jul; 9(7):769-782. PubMed ID: 27318718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation.
    Thavendiranathan P; Liu S; Verhaert D; Calleja A; Nitinunu A; Van Houten T; De Michelis N; Simonetti O; Rajagopalan S; Ryan T; Vannan MA
    JACC Cardiovasc Imaging; 2012 Mar; 5(3):239-51. PubMed ID: 22421168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training.
    Jafari MH; Girgis H; Van Woudenberg N; Liao Z; Rohling R; Gin K; Abolmaesumi P; Tsang T
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1027-1037. PubMed ID: 30941679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real time three-dimensional echocardiographic assessment of left ventricular function in heart failure patients: underestimation of left ventricular volume increases with the degree of dilatation.
    Moceri P; Doyen D; Bertora D; Cerboni P; Ferrari E; Gibelin P
    Echocardiography; 2012 Sep; 29(8):970-7. PubMed ID: 22563905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based automated left ventricle segmentation and flow quantification in 4D flow cardiac MRI.
    Sun X; Cheng LH; Plein S; Garg P; van der Geest RJ
    J Cardiovasc Magn Reson; 2024 Summer; 26(1):100003. PubMed ID: 38211658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction: assessment by two- and three-dimensional echocardiography and magnetic resonance imaging.
    Chuang ML; Hibberd MG; Salton CJ; Beaudin RA; Riley MF; Parker RA; Douglas PS; Manning WJ
    J Am Coll Cardiol; 2000 Feb; 35(2):477-84. PubMed ID: 10676697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EchoEFNet: Multi-task deep learning network for automatic calculation of left ventricular ejection fraction in 2D echocardiography.
    Li H; Wang Y; Qu M; Cao P; Feng C; Yang J
    Comput Biol Med; 2023 Apr; 156():106705. PubMed ID: 36863190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Added Value of 3- Versus 2-Dimensional Echocardiography Left Ventricular Ejection Fraction to Predict Arrhythmic Risk in Patients With Left Ventricular Dysfunction.
    Rodríguez-Zanella H; Muraru D; Secco E; Boccalini F; Azzolina D; Aruta P; Surkova E; Genovese D; Cavalli G; Sammarco G; Ruozi N; Tenaglia RM; Calvillo-Argüelles O; Palermo C; Iliceto S; Badano LP
    JACC Cardiovasc Imaging; 2019 Oct; 12(10):1917-1926. PubMed ID: 30219408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial intelligence-enhanced automation for M-mode echocardiographic analysis: ensuring fully automated, reliable, and reproducible measurements.
    Jeong D; Jung S; Yoon YE; Jeon J; Jang Y; Ha S; Hong Y; Cho J; Lee SA; Choi HM; Chang HJ
    Int J Cardiovasc Imaging; 2024 Jun; 40(6):1245-1256. PubMed ID: 38652399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of left ventricular diameter on left atrial appendage size and thrombus formation in patients with dilated cardiomyopathy.
    Bakalli A; Kamberi L; Pllana E; Zahiti B; Dragusha G; Brovina A
    Turk Kardiyol Dern Ars; 2010 Mar; 38(2):90-4. PubMed ID: 20473009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully Automated Echocardiogram Interpretation in Clinical Practice.
    Zhang J; Gajjala S; Agrawal P; Tison GH; Hallock LA; Beussink-Nelson L; Lassen MH; Fan E; Aras MA; Jordan C; Fleischmann KE; Melisko M; Qasim A; Shah SJ; Bajcsy R; Deo RC
    Circulation; 2018 Oct; 138(16):1623-1635. PubMed ID: 30354459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.