BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34170365)

  • 21. Comparison of Prostate MRI Lesion Segmentation Agreement Between Multiple Radiologists and a Fully Automatic Deep Learning System.
    Schelb P; Tavakoli AA; Tubtawee T; Hielscher T; Radtke JP; Görtz M; Schütz V; Kuder TA; Schimmöller L; Stenzinger A; Hohenfellner M; Schlemmer HP; Bonekamp D
    Rofo; 2021 May; 193(5):559-573. PubMed ID: 33212541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
    Tang X; Jafargholi Rangraz E; Coudyzer W; Bertels J; Robben D; Schramm G; Deckers W; Maleux G; Baete K; Verslype C; Gooding MJ; Deroose CM; Nuyts J
    Eur J Nucl Med Mol Imaging; 2020 Nov; 47(12):2742-2752. PubMed ID: 32314026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aorta and main pulmonary artery segmentation using stacked U-Net and localization on non-contrast-enhanced computed tomography images.
    Suzuki H; Kawata Y; Aokage K; Matsumoto Y; Sugiura T; Tanabe N; Nakano Y; Tsuchida T; Kusumoto M; Marumo K; Kaneko M; Niki N
    Med Phys; 2024 Feb; 51(2):1232-1243. PubMed ID: 37519027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multicentric clinical evaluation of a computed tomography-based fully automated deep neural network for aortic maximum diameter and volumetric measurements.
    Postiglione TJ; Guillo E; Heraud A; Rossillon A; Bartoli M; Herpe G; Adam C; Fabre D; Ardon R; Azarine A; Haulon S
    J Vasc Surg; 2024 Jun; 79(6):1390-1400.e8. PubMed ID: 38325564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic detection of aorto-femoral vessel trajectory from whole-body computed tomography angiography data sets.
    Gao X; Kitslaar PH; Budde RP; Tu S; de Graaf MA; Xu L; Xu B; Scholte AJ; Dijkstra J; Reiber JH
    Int J Cardiovasc Imaging; 2016 Aug; 32(8):1311-22. PubMed ID: 27209285
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic Time-Resolved Cardiovascular Segmentation of 4D Flow MRI Using Deep Learning.
    Bustamante M; Viola F; Engvall J; Carlhäll CJ; Ebbers T
    J Magn Reson Imaging; 2023 Jan; 57(1):191-203. PubMed ID: 35506525
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning enables automatic quantitative assessment of puborectalis muscle and urogenital hiatus in plane of minimal hiatal dimensions.
    van den Noort F; van der Vaart CH; Grob ATM; van de Waarsenburg MK; Slump CH; van Stralen M
    Ultrasound Obstet Gynecol; 2019 Aug; 54(2):270-275. PubMed ID: 30461079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascular Deformation Mapping for CT Surveillance of Thoracic Aortic Aneurysm Growth.
    Burris NS; Bian Z; Dominic J; Zhong J; Houben IB; van Bakel TMJ; Patel HJ; Ross BD; Christensen GE; Hatt CR
    Radiology; 2022 Jan; 302(1):218-225. PubMed ID: 34665030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of fully automatic segmentation of pulmonary artery and aorta on noncontrast CT with optimal surface graph cuts.
    Sedghi Gamechi Z; Arias-Lorza AM; Saghir Z; Bos D; de Bruijne M
    Med Phys; 2021 Dec; 48(12):7837-7849. PubMed ID: 34653274
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases.
    Lindgren Belal S; Sadik M; Kaboteh R; Enqvist O; Ulén J; Poulsen MH; Simonsen J; Høilund-Carlsen PF; Edenbrandt L; Trägårdh E
    Eur J Radiol; 2019 Apr; 113():89-95. PubMed ID: 30927965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma.
    Roblot V; Giret Y; Mezghani S; Auclin E; Arnoux A; Oudard S; Duron L; Fournier L
    Eur Radiol; 2022 Jul; 32(7):4728-4737. PubMed ID: 35304638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning.
    Shahzad R; Pennig L; Goertz L; Thiele F; Kabbasch C; Schlamann M; Krischek B; Maintz D; Perkuhn M; Borggrefe J
    Sci Rep; 2020 Dec; 10(1):21799. PubMed ID: 33311535
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of deep learning-based image segmentation methods for intravascular ultrasound on retrospective and large image cohort study.
    Dong L; Lu W; Lu X; Leng X; Xiang J; Li C
    Biomed Eng Online; 2023 Nov; 22(1):111. PubMed ID: 38017463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Three-Dimensional Deep Convolutional Neural Network for Automatic Segmentation and Diameter Measurement of Type B Aortic Dissection.
    Yu Y; Gao Y; Wei J; Liao F; Xiao Q; Zhang J; Yin W; Lu B
    Korean J Radiol; 2021 Feb; 22(2):168-178. PubMed ID: 33236538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation and quantification of epicardial adipose tissue from coronary computed tomography angiography.
    He X; Guo BJ; Lei Y; Wang T; Fu Y; Curran WJ; Zhang LJ; Liu T; Yang X
    Phys Med Biol; 2020 May; 65(9):095012. PubMed ID: 32182595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep learning models for automatic tumor segmentation and total tumor volume assessment in patients with colorectal liver metastases.
    Wesdorp NJ; Zeeuw JM; Postma SCJ; Roor J; van Waesberghe JHTM; van den Bergh JE; Nota IM; Moos S; Kemna R; Vadakkumpadan F; Ambrozic C; van Dieren S; van Amerongen MJ; Chapelle T; Engelbrecht MRW; Gerhards MF; Grunhagen D; van Gulik TM; Hermans JJ; de Jong KP; Klaase JM; Liem MSL; van Lienden KP; Molenaar IQ; Patijn GA; Rijken AM; Ruers TM; Verhoef C; de Wilt JHW; Marquering HA; Stoker J; Swijnenburg RJ; Punt CJA; Huiskens J; Kazemier G
    Eur Radiol Exp; 2023 Dec; 7(1):75. PubMed ID: 38038829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Segmentation of the aorta in systolic phase from 4D flow MRI: multi-atlas vs. deep learning.
    Marin-Castrillon DM; Geronzi L; Boucher A; Lin S; Morgant MC; Cochet A; Rochette M; Leclerc S; Ambarki K; Jin N; Aho LS; Lalande A; Bouchot O; Presles B
    MAGMA; 2023 Oct; 36(5):687-700. PubMed ID: 36800143
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geodesic Distance Algorithm for Extracting the Ascending Aorta from 3D CT Images.
    Jang Y; Jung HY; Hong Y; Cho I; Shim H; Chang HJ
    Comput Math Methods Med; 2016; 2016():4561979. PubMed ID: 26904151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.