BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 34170679)

  • 1. Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam.
    Ma Z; Liu X; Xu X; Liu L; Yu B; Maluk C; Huang G; Wang H; Song P
    ACS Nano; 2021 Jul; 15(7):11667-11680. PubMed ID: 34170679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview.
    Jiang Y; Yang H; Lin X; Xiang S; Feng X; Wan C
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam.
    Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
    Davis R; Li YC; Gervasio M; Luu J; Kim YS
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eco-friendly bamboo pulp foam enabled by chitosan and phytic acid interfacial assembly of halloysite nanotubes: Toward flame retardancy, thermal insulation, and sound absorption.
    Yu X; Jin X; He Y; Yu Z; Zhang R; Qin D
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129393. PubMed ID: 38218301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel self-healing and recyclable fire-retardant polyvinyl alcohol/borax hydrogel coatings for the fire safety of rigid polyurethane foam.
    Qian X; Mu N; Zhao X; Shi C; Jiang S; Wan M; Yu B
    Soft Matter; 2023 Aug; 19(32):6097-6107. PubMed ID: 37526969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Flame-Retardant and Low Heat/Smoke-Release Wood Materials: Fabrication and Properties.
    Deng ZP; Fu T; Song X; Wang ZL; Guo DM; Wang YZ; Song F
    Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels.
    Wi S; Yang S; Yun BY; Kang Y; Kim S
    Environ Pollut; 2022 Nov; 312():120067. PubMed ID: 36067974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Flame Retardancy of Rigid Polyurethane Foams by Polyacrylamide/MXene Hydrogel Nanocomposite Coating.
    Chen B; Yang L
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Review of Recent Research Advances on Flame-Retardant Coatings for Building Materials: Chemical Ingredients, Micromorphology, and Processing Techniques.
    Li FF
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions.
    Shi X; Jiang S; Zhu J; Li G; Peng X
    RSC Adv; 2018 Mar; 8(18):9985-9995. PubMed ID: 35540820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam.
    Jiang Q; Li P; Liu Y; Zhu P
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating.
    Chen HB; Shen P; Chen MJ; Zhao HB; Schiraldi DA
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32557-32564. PubMed ID: 27933853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Inorganic Aluminum Phosphate-Based Flame Retardant and Thermal Insulation Coating and Performance Analysis.
    Cai G; Wu J; Guo J; Wan Y; Zhou Q; Zhang P; Yu X; Wang M
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Burning Behaviour of Rigid Polyurethane Foams with Histidine and Modified Graphene Oxide.
    Sałasińska K; Leszczyńska M; Celiński M; Kozikowski P; Kowiorski K; Lipińska L
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33802345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings.
    Zhang L; Huang Y; Sun P; Hai Y; Jiang S
    Soft Matter; 2021 May; 17(20):5231-5239. PubMed ID: 33949608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller.
    Yew MC; Ramli Sulong NH; Yew MK; Amalina MA; Johan MR
    ScientificWorldJournal; 2014; 2014():805094. PubMed ID: 25136687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by double network hydrogel coatings.
    Huang Y; Zhou J; Sun P; Zhang L; Qian X; Jiang S; Shi C
    Soft Matter; 2021 Dec; 17(46):10555-10565. PubMed ID: 34761787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchically porous SiO
    Li ME; Wang SX; Han LX; Yuan WJ; Cheng JB; Zhang AN; Zhao HB; Wang YZ
    J Hazard Mater; 2019 Aug; 375():61-69. PubMed ID: 31048136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial architecting of organic-inorganic hybrid toward mechanically reinforced, fire-resistant and smoke-suppressed polyurethane composites.
    Xu P; Luo Y; Zhang P
    J Colloid Interface Sci; 2022 Sep; 621():385-397. PubMed ID: 35468559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.