These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34170903)

  • 1. Similar sensorimotor transformations control balance during standing and walking.
    Afschrift M; De Groote F; Jonkers I
    PLoS Comput Biol; 2021 Jun; 17(6):e1008369. PubMed ID: 34170903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assisting walking balance using a bio-inspired exoskeleton controller.
    Afschrift M; van Asseldonk E; van Mierlo M; Bayon C; Keemink A; D'Hondt L; van der Kooij H; De Groote F
    J Neuroeng Rehabil; 2023 Jun; 20(1):82. PubMed ID: 37370175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Once-per-step control of ankle-foot prosthesis push-off work reduces effort associated with balance during walking.
    Kim M; Collins SH
    J Neuroeng Rehabil; 2015 May; 12():43. PubMed ID: 25928176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased muscle responses to balance perturbations in children with cerebral palsy can be explained by increased sensitivity to center of mass movement.
    Willaert J; Martino G; Desloovere K; Van Campenhout A; Ting LH; De Groote F
    Gait Posture; 2024 Jan; 107():121-129. PubMed ID: 36990910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Does Ankle Mechanical Stiffness Change as a Function of Muscle Activation in Standing and During the Late Stance of Walking?
    Joshi V; Rouse EJ; Claflin ES; Krishnan C
    IEEE Trans Biomed Eng; 2022 Mar; 69(3):1186-1193. PubMed ID: 34606446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sling-based infant carrying affects lumbar and thoracic spine neuromechanics during standing and walking.
    Schmid S; Stauffer M; Jäger J; List R; Lorenzetti S
    Gait Posture; 2019 Jan; 67():172-180. PubMed ID: 30343249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle muscle responses during perturbed walking with blocked ankle joints.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    J Neurophysiol; 2019 May; 121(5):1711-1717. PubMed ID: 30864874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.
    Sinkjaer T
    Acta Neurol Scand Suppl; 1997; 170():1-28. PubMed ID: 9406617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered Walking Neuromechanics in Patients With Chronic Ankle Instability.
    Son SJ; Kim H; Seeley MK; Hopkins JT
    J Athl Train; 2019 Jun; 54(6):684-697. PubMed ID: 31162941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlations between joint kinematics and dynamic balance control during gait in pregnancy.
    Catena RD; Bailey JP; Campbell N; Stewart BC; Marion SJ
    Gait Posture; 2020 Jul; 80():106-112. PubMed ID: 32502792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A wearable resistive robot facilitates locomotor adaptations during gait.
    Washabaugh EP; Krishnan C
    Restor Neurol Neurosci; 2018; 36(2):215-223. PubMed ID: 29526856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower extremity joint-level responses to pelvis perturbation during human walking.
    Vlutters M; van Asseldonk EHF; van der Kooij H
    Sci Rep; 2018 Oct; 8(1):14621. PubMed ID: 30279499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of slope walking in the cat: quantification of muscle load, length change, and ankle extensor EMG patterns.
    Gregor RJ; Smith DW; Prilutsky BI
    J Neurophysiol; 2006 Mar; 95(3):1397-409. PubMed ID: 16207777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-latency muscle activity reflects continuous, delayed sensorimotor feedback of task-level and not joint-level error.
    Safavynia SA; Ting LH
    J Neurophysiol; 2013 Sep; 110(6):1278-90. PubMed ID: 23803325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exoskeletons need to react faster than physiological responses to improve standing balance.
    Beck ON; Shepherd MK; Rastogi R; Martino G; Ting LH; Sawicki GS
    Sci Robot; 2023 Feb; 8(75):eadf1080. PubMed ID: 36791215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of stride length on lower extremity joint kinetics at various gait speeds.
    McGrath RL; Ziegler ML; Pires-Fernandes M; Knarr BA; Higginson JS; Sergi F
    PLoS One; 2019; 14(2):e0200862. PubMed ID: 30794565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of whole-body muscle activations following vertical perturbations during standing and walking.
    Cano Porras D; Jacobs JV; Inzelberg R; Bahat Y; Zeilig G; Plotnik M
    J Neuroeng Rehabil; 2021 May; 18(1):75. PubMed ID: 33957953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.