BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34170925)

  • 1. Simulation of angiogenesis in three dimensions: Application to cerebral cortex.
    Alberding JP; Secomb TW
    PLoS Comput Biol; 2021 Jun; 17(6):e1009164. PubMed ID: 34170925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Making microvascular networks work: angiogenesis, remodeling, and pruning.
    Pries AR; Secomb TW
    Physiology (Bethesda); 2014 Nov; 29(6):446-55. PubMed ID: 25362638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: Application to cerebral cortex.
    Celaya-Alcala JT; Lee GV; Smith AF; Li B; Sakadžić S; Boas DA; Secomb TW
    J Cereb Blood Flow Metab; 2021 Mar; 41(3):656-669. PubMed ID: 32501155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determinants of microvascular network topologies in implanted neovasculatures.
    Chang CC; Krishnan L; Nunes SS; Church KH; Edgar LT; Boland ED; Weiss JA; Williams SK; Hoying JB
    Arterioscler Thromb Vasc Biol; 2012 Jan; 32(1):5-14. PubMed ID: 22053070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A computational modeling of blood flow in asymmetrically bifurcating microvessels and its experimental validation.
    Lee TR; Hong JA; Yoo SS; Kim DW
    Int J Numer Method Biomed Eng; 2018 Jun; 34(6):e2981. PubMed ID: 29521012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral microcirculation and oxygen tension in the human secondary cortex.
    Linninger AA; Gould IG; Marrinan T; Hsu CY; Chojecki M; Alaraj A
    Ann Biomed Eng; 2013 Nov; 41(11):2264-84. PubMed ID: 23842693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid discrete-continuum approach for modelling microcirculatory blood flow.
    Shipley RJ; Smith AF; Sweeney PW; Pries AR; Secomb TW
    Math Med Biol; 2020 Feb; 37(1):40-57. PubMed ID: 30892609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural adaptation of normal and tumour vascular networks.
    Secomb TW; Dewhirst MW; Pries AR
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):63-9. PubMed ID: 21995550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based inference from microvascular measurements: Combining experimental measurements and model predictions using a Bayesian probabilistic approach.
    Rasmussen PM; Smith AF; Sakadžić S; Boas DA; Pries AR; Secomb TW; Østergaard L
    Microcirculation; 2017 May; 24(4):. PubMed ID: 27987383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A computational model of intussusceptive microvascular growth and remodeling.
    Szczerba D; Kurz H; Szekely G
    J Theor Biol; 2009 Dec; 261(4):570-83. PubMed ID: 19766124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging is associated with impaired angiogenesis, but normal microvascular network structure, in the rat mesentery.
    Sweat RS; Sloas DC; Stewart SA; Czarny-Ratajczak M; Baddoo M; Eastwood JR; Suarez-Martinez AD; Azimi MS; Burks HE; Chedister LO; Myers L; Murfee WL
    Am J Physiol Heart Circ Physiol; 2017 Feb; 312(2):H275-H284. PubMed ID: 27864233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural adaptation of microvascular networks: functional roles of adaptive responses.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1015-25. PubMed ID: 11514266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo imaging of cerebral microvascular plasticity from birth to death.
    Harb R; Whiteus C; Freitas C; Grutzendler J
    J Cereb Blood Flow Metab; 2013 Jan; 33(1):146-56. PubMed ID: 23093067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow modeling in primate cortex.
    Guibert R; Fonta C; Plouraboué F
    J Cereb Blood Flow Metab; 2010 Nov; 30(11):1860-73. PubMed ID: 20648040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of cerebral microhemodynamics.
    Hudetz AG; Spaulding JG; Kiani MF
    Adv Exp Med Biol; 1989; 248():293-304. PubMed ID: 2782153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the microvasculature and its microenvironment.
    Krishnan L; Chang CC; Nunes SS; Williams SK; Weiss JA; Hoying JB
    Crit Rev Biomed Eng; 2013; 41(2):91-123. PubMed ID: 24580565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voxelized simulation of cerebral oxygen perfusion elucidates hypoxia in aged mouse cortex.
    Hartung G; Badr S; Moeini M; Lesage F; Kleinfeld D; Alaraj A; Linninger A
    PLoS Comput Biol; 2021 Jan; 17(1):e1008584. PubMed ID: 33507970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical modelling of blind-ended vessels within a developing angiogenic plexus.
    Guerreiro-Lucas LA; Pop SR; Machado MJ; Ma YL; Waters SL; Richardson G; Saetzler K; Jensen OE; Mitchell CA
    Microvasc Res; 2008 Nov; 76(3):161-8. PubMed ID: 18687342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.