BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 34170981)

  • 1. A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation.
    Wang M; Cang Z; Wei GW
    Nat Mach Intell; 2020; 2(2):116-123. PubMed ID: 34170981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks.
    Wu K; Wei GW
    J Chem Inf Model; 2018 Feb; 58(2):520-531. PubMed ID: 29314829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Affinity Through Homology (PATH): Interpretable Binding Affinity Prediction with Persistent Homology.
    Long Y; Donald BR
    bioRxiv; 2023 Nov; ():. PubMed ID: 38014181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Persistent Cohomology for Data With Multicomponent Heterogeneous Information.
    Cang Z; Wei GW
    SIAM J Math Data Sci; 2020; 2(2):396-418. PubMed ID: 34222831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
    Cang Z; Mu L; Wei GW
    PLoS Comput Biol; 2018 Jan; 14(1):e1005929. PubMed ID: 29309403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atom-specific persistent homology and its application to protein flexibility analysis.
    Bramer D; Wei GW
    Comput Math Biophys; 2020 Jan; 8(1):1-35. PubMed ID: 34278230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions.
    Cang Z; Wei GW
    PLoS Comput Biol; 2017 Jul; 13(7):e1005690. PubMed ID: 28749969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of element specific persistent homology and machine learning for protein-ligand binding affinity prediction.
    Cang Z; Wei GW
    Int J Numer Method Biomed Eng; 2018 Feb; 34(2):. PubMed ID: 28677268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 4(Suppl 4):S8. PubMed ID: 25734685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TopP-S: Persistent homology-based multi-task deep neural networks for simultaneous predictions of partition coefficient and aqueous solubility.
    Wu K; Zhao Z; Wang R; Wei GW
    J Comput Chem; 2018 Jul; 39(20):1444-1454. PubMed ID: 29633287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Sequential Forward Feature Selection (SFFS) Algorithm for Mining Best Topological and Biological Features to Predict Protein Complexes from Protein-Protein Interaction Networks (PPINs).
    Younis H; Anwar MW; Khan MUG; Sikandar A; Bajwa UI
    Interdiscip Sci; 2021 Sep; 13(3):371-388. PubMed ID: 33959851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary homology on coupled dynamical systems with applications to protein flexibility analysis.
    Cang Z; Munch E; Wei GW
    J Appl Comput Topol; 2020 Dec; 4(4):481-507. PubMed ID: 34179350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity.
    Liu X; Luo Y; Li P; Song S; Peng J
    PLoS Comput Biol; 2021 Aug; 17(8):e1009284. PubMed ID: 34347784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient Boosting Decision Tree-Based Method for Predicting Interactions Between Target Genes and Drugs.
    Xuan P; Sun C; Zhang T; Ye Y; Shen T; Dong Y
    Front Genet; 2019; 10():459. PubMed ID: 31214240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are 2D fingerprints still valuable for drug discovery?
    Gao K; Nguyen DD; Sresht V; Mathiowetz AM; Tu M; Wei GW
    Phys Chem Chem Phys; 2020 Apr; 22(16):8373-8390. PubMed ID: 32266895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Survey of Topological Machine Learning Methods.
    Hensel F; Moor M; Rieck B
    Front Artif Intell; 2021; 4():681108. PubMed ID: 34124648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.