These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 34170981)

  • 21. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Compliance Prediction for Structural Topology Optimization on the Basis of Moment Invariants and a Generalized Regression Neural Network.
    Zhao Y; Chen Z; Dong Y
    Entropy (Basel); 2023 Sep; 25(10):. PubMed ID: 37895517
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate prediction of protein-lncRNA interactions by diffusion and HeteSim features across heterogeneous network.
    Deng L; Wang J; Xiao Y; Wang Z; Liu H
    BMC Bioinformatics; 2018 Oct; 19(1):370. PubMed ID: 30309340
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topological representations of crystalline compounds for the machine-learning prediction of materials properties.
    Jiang Y; Chen D; Chen X; Li T; Wei GW; Pan F
    NPJ Comput Mater; 2021; 7():. PubMed ID: 34676106
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomolecular Topology: Modelling and Analysis.
    Liu J; Xia KL; Wu J; Yau SS; Wei GW
    Acta Math Sin Engl Ser; 2022; 38(10):1901-1938. PubMed ID: 36407804
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining SVM and ECOC for Identification of Protein Complexes from Protein Protein Interaction Networks by Integrating Amino Acids' Physical Properties and Complex Topology.
    Faridoon A; Sikandar A; Imran M; Ghouri S; Sikandar M; Sikandar W
    Interdiscip Sci; 2020 Sep; 12(3):264-275. PubMed ID: 32441001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TIDAL: Topology-Inferred Drug Addiction Learning.
    Zhu Z; Dou B; Cao Y; Jiang J; Zhu Y; Chen D; Feng H; Liu J; Zhang B; Zhou T; Wei GW
    J Chem Inf Model; 2023 Mar; 63(5):1472-1489. PubMed ID: 36826415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity.
    Ahmed A; Mam B; Sowdhamini R
    Bioinform Biol Insights; 2021; 15():11779322211030364. PubMed ID: 34290496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network.
    Khunlertgit N; Yoon BJ
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):351. PubMed ID: 27766944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contacts-based prediction of binding affinity in protein-protein complexes.
    Vangone A; Bonvin AM
    Elife; 2015 Jul; 4():e07454. PubMed ID: 26193119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A review of mathematical representations of biomolecular data.
    Nguyen DD; Cang Z; Wei GW
    Phys Chem Chem Phys; 2020 Feb; 22(8):4343-4367. PubMed ID: 32067019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combining High Speed ELM Learning with a Deep Convolutional Neural Network Feature Encoding for Predicting Protein-RNA Interactions.
    Wang L; You ZH; Huang DS; Zhou F
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):972-980. PubMed ID: 30296240
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SAAMBE-SEQ: a sequence-based method for predicting mutation effect on protein-protein binding affinity.
    Li G; Pahari S; Murthy AK; Liang S; Fragoza R; Yu H; Alexov E
    Bioinformatics; 2021 May; 37(7):992-999. PubMed ID: 32866236
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Persistent homology analysis of protein structure, flexibility, and folding.
    Xia K; Wei GW
    Int J Numer Method Biomed Eng; 2014 Aug; 30(8):814-44. PubMed ID: 24902720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A deep neural network approach to predicting clinical outcomes of neuroblastoma patients.
    Tranchevent LC; Azuaje F; Rajapakse JC
    BMC Med Genomics; 2019 Dec; 12(Suppl 8):178. PubMed ID: 31856829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Data Integration Using Advances in Machine Learning in Drug Discovery and Molecular Biology.
    Hudson IL
    Methods Mol Biol; 2021; 2190():167-184. PubMed ID: 32804365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Convolutional Neural Network Based Method for Predicting Disease-Related miRNAs.
    Xuan P; Dong Y; Guo Y; Zhang T; Liu Y
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30477152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting changes in protein thermodynamic stability upon point mutation with deep 3D convolutional neural networks.
    Li B; Yang YT; Capra JA; Gerstein MB
    PLoS Comput Biol; 2020 Nov; 16(11):e1008291. PubMed ID: 33253214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tripartite Network-Based Repurposing Method Using Deep Learning to Compute Similarities for Drug-Target Prediction.
    Zong N; Wong RSN; Ngo V
    Methods Mol Biol; 2019; 1903():317-328. PubMed ID: 30547451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.