These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 3417105)

  • 21. Membrane currents underlying activity in frog sinus venosus.
    Brown HF; Giles W; Noble SJ
    J Physiol; 1977 Oct; 271(3):783-816. PubMed ID: 303699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of verapamil and diltiazem on calcium-dependent electrical activity in cardiac Purkinje fibres.
    Amerini S; Giotti A; Mugelli A
    Br J Pharmacol; 1985 May; 85(1):89-96. PubMed ID: 4027475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of clonixin on the electrical activity of cardiac pacemaker cells.
    Morales MA; Inostroza L; Salazar T; Paeile C
    Gen Pharmacol; 1992 May; 23(3):515-21. PubMed ID: 1380935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of verapamil on SA and AV nodal action potentials in the isolated rabbit heart.
    Okada T; Konishi T
    Jpn Circ J; 1975 Aug; 39(8):913-7. PubMed ID: 1165603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of the effects of adenosine and verapamil on the conduction and pacemaker system of isolated guinea pig hearts.
    Stark G; Stark U; Bachernegg M; Kasper K; Kickenweiz E; Decrinis M
    Clin Cardiol; 1993 Dec; 16(12):859-62. PubMed ID: 8168269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophysiological effects of butoprozine on isolated heart preparations. Comparison with amiodarone and verapamil.
    Néliat G; Moreau M; Ducouret P; Gargouïl YM
    Arch Int Pharmacodyn Ther; 1982 Feb; 255(2):220-36. PubMed ID: 6978694
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the electropharmacological effects of verapamil and propranolol in the halothane-anesthetized in vivo canine model under monophasic action potential monitoring.
    Shiina H; Sugiyama A; Takahara A; Satoh Y; Hashimoto K
    Jpn Circ J; 2000 Oct; 64(10):777-82. PubMed ID: 11059619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suppression of lysophosphatidylcholine-induced abnormal automaticity by verapamil in canine Purkinje fibers.
    Nakaya H; Kimura S; Kanno M
    Jpn J Pharmacol; 1984 Nov; 36(3):371-8. PubMed ID: 6521078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of verapamil on canine Purkinje fibres and ventricular muscle fibres with particular reference to the alternation of action potential duration after a sudden increase in driving rate.
    Hirata Y; Kodama I; Iwamura N; Shimizu T; Toyama J; Yamada K
    Cardiovasc Res; 1979 Jan; 13(1):1-8. PubMed ID: 445526
    [No Abstract]   [Full Text] [Related]  

  • 30. Effects of local anesthetics, tetrodotoxin, aconitine and verapamil on the mechanoreceptors of isolated frog heart.
    Kontani H; Koshiura R
    Jpn J Pharmacol; 1983 Jun; 33(3):503-13. PubMed ID: 6604831
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of a calcium antagonist, CD-349, with nifedipine, diltiazem, and verapamil in rabbit spontaneously beating sinoatrial node cells.
    Satoh H; Tsuchida K
    J Cardiovasc Pharmacol; 1993 May; 21(5):685-92. PubMed ID: 7685436
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The blockade of Vmax of the atrioventricular action potential produced by the slow channel inhibitors verapamil and nifedipine.
    Kohlhardt M; Haap K
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Apr; 316(2):178-85. PubMed ID: 6264331
    [No Abstract]   [Full Text] [Related]  

  • 33. Effect of verapamil on electrical activities of SA node, ventricular muscle and Purkinje fibers in isolated rabbit hearts.
    Okada T
    Jpn Circ J; 1976 Apr; 40(4):329-41. PubMed ID: 933325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia.
    Wit AL; Cranefield PF
    Circ Res; 1974 Sep; 35(3):413-25. PubMed ID: 4418549
    [No Abstract]   [Full Text] [Related]  

  • 35. Modulation of conduction slowing in ischemic rabbit myocardium by calcium-channel activation and blockade.
    Kabell G
    Circulation; 1988 Jun; 77(6):1385-94. PubMed ID: 2453305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological effects of 4-aminoquinoline on frog atrial contractile fibres.
    Guerrero S; Zacharias J
    Arch Int Pharmacodyn Ther; 1984 May; 269(1):94-110. PubMed ID: 6466010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of 4-aminopyridine on pacemaker activity of frog sinus venosus.
    Guerrero S; Novakovic L
    Eur J Pharmacol; 1980 Apr; 62(4):335-40. PubMed ID: 7371727
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative cardiac effects of KT-362 and verapamil in isolated heart--correlation to calcium channel current depression.
    Buljubasic N; Marijic J; Stowe DF; Gross GJ; Kampine JP; Bosnjak ZJ
    J Cardiovasc Pharmacol; 1991 Oct; 18(4):594-604. PubMed ID: 1724538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comparison of the electrophysiological features between the rhythmic cells of the aortic vestibule and the sinoatrial node in the rabbit].
    Zhang XY; Chen YJ; Ge FG; Wang DB
    Sheng Li Xue Bao; 2003 Aug; 55(4):405-10. PubMed ID: 12937819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of verapamil on automaticity and conduction with particular reference to tachyphylaxis.
    Lupi GA; Urthaler F; James TN
    Eur J Cardiol; 1979 May; 9(5):345-68. PubMed ID: 456394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.