These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34171135)
1. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO Hong H; Adam V; Nowack B Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135 [TBL] [Abstract][Full Text] [Related]
2. Engineered nanomaterials in water and soils: a risk quantification based on probabilistic exposure and effect modeling. Gottschalk F; Kost E; Nowack B Environ Toxicol Chem; 2013 Jun; 32(6):1278-87. PubMed ID: 23418073 [TBL] [Abstract][Full Text] [Related]
3. Considering the forms of released engineered nanomaterials in probabilistic material flow analysis. Adam V; Caballero-Guzman A; Nowack B Environ Pollut; 2018 Dec; 243(Pt A):17-27. PubMed ID: 30170204 [TBL] [Abstract][Full Text] [Related]
4. Environmental risk assessment of engineered nano-SiO Wang Y; Nowack B Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795 [TBL] [Abstract][Full Text] [Related]
5. Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Coll C; Notter D; Gottschalk F; Sun T; Som C; Nowack B Nanotoxicology; 2016; 10(4):436-44. PubMed ID: 26554717 [TBL] [Abstract][Full Text] [Related]
6. Material-specific properties applied to an environmental risk assessment of engineered nanomaterials - implications on grouping and read-across concepts. Wigger H; Nowack B Nanotoxicology; 2019 Jun; 13(5):623-643. PubMed ID: 30727799 [TBL] [Abstract][Full Text] [Related]
7. Integrated dynamic probabilistic material flow analysis of engineered materials in all European countries. Adam V; Wu Q; Nowack B NanoImpact; 2021 Apr; 22():100312. PubMed ID: 35559969 [TBL] [Abstract][Full Text] [Related]
8. Comparison of species sensitivity distribution modeling approaches for environmental risk assessment of nanomaterials - A case study for silver and titanium dioxide representative materials. Sørensen SN; Wigger H; Zabeo A; Semenzin E; Hristozov D; Nowack B; Spurgeon DJ; Baun A Aquat Toxicol; 2020 Aug; 225():105543. PubMed ID: 32585540 [TBL] [Abstract][Full Text] [Related]
9. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538 [TBL] [Abstract][Full Text] [Related]
10. Dynamic probabilistic material flow analysis of engineered nanomaterials in European waste treatment systems. Rajkovic S; Bornhöft NA; van der Weijden R; Nowack B; Adam V Waste Manag; 2020 Jul; 113():118-131. PubMed ID: 32531660 [TBL] [Abstract][Full Text] [Related]
11. An Integrated Testing Strategy for Ecotoxicity (ITS-ECO) Assessment in the Marine Environmental Compartment using Mytilus spp.: A Case Study using Pristine and Coated CuO and TiO Connolly M; Little S; Hartl MGJ; Fernandes TF Environ Toxicol Chem; 2022 Jun; 41(6):1390-1406. PubMed ID: 35226375 [TBL] [Abstract][Full Text] [Related]
12. Meta-analysis of Bioaccumulation Data for Nondissolvable Engineered Nanomaterials in Freshwater Aquatic Organisms. Zheng Y; Nowack B Environ Toxicol Chem; 2022 May; 41(5):1202-1214. PubMed ID: 35188281 [TBL] [Abstract][Full Text] [Related]
13. Use of engineered nanomaterials in the construction industry with specific emphasis on paints and their flows in construction and demolition waste in Switzerland. Hincapié I; Caballero-Guzman A; Hiltbrunner D; Nowack B Waste Manag; 2015 Sep; 43():398-406. PubMed ID: 26164852 [TBL] [Abstract][Full Text] [Related]
14. Probabilistic material flow analysis of released nano titanium dioxide in Mexico. Ortiz-Galvez LM; Caballero-Guzman A; Lopes C; Alfaro-Moreno E NanoImpact; 2024 Jul; 35():100516. PubMed ID: 38838766 [TBL] [Abstract][Full Text] [Related]
15. Chemical interactions between Nano-ZnO and Nano-TiO2 in a natural aqueous medium. Tong T; Fang K; Thomas SA; Kelly JJ; Gray KA; Gaillard JF Environ Sci Technol; 2014 Jul; 48(14):7924-32. PubMed ID: 24918623 [TBL] [Abstract][Full Text] [Related]
16. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Gottschalk F; Sonderer T; Scholz RW; Nowack B Environ Sci Technol; 2009 Dec; 43(24):9216-22. PubMed ID: 20000512 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Sun TY; Gottschalk F; Hungerbühler K; Nowack B Environ Pollut; 2014 Feb; 185():69-76. PubMed ID: 24220022 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Probabilistic Modeling of Environmental Emissions of Engineered Nanomaterials. Sun TY; Bornhöft NA; Hungerbühler K; Nowack B Environ Sci Technol; 2016 May; 50(9):4701-11. PubMed ID: 27043743 [TBL] [Abstract][Full Text] [Related]
19. Combined Toxicity of Nano-ZnO and Nano-TiO2: From Single- to Multinanomaterial Systems. Tong T; Wilke CM; Wu J; Binh CT; Kelly JJ; Gaillard JF; Gray KA Environ Sci Technol; 2015 Jul; 49(13):8113-23. PubMed ID: 26070110 [TBL] [Abstract][Full Text] [Related]
20. Bio-nano interface and environment: A critical review. Pulido-Reyes G; Leganes F; Fernández-Piñas F; Rosal R Environ Toxicol Chem; 2017 Dec; 36(12):3181-3193. PubMed ID: 28731222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]