These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34171135)
41. The release of engineered nanomaterials to the environment. Gottschalk F; Nowack B J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066 [TBL] [Abstract][Full Text] [Related]
42. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Callaghan NI; MacCormack TJ Comp Biochem Physiol C Toxicol Pharmacol; 2017 Mar; 193():30-41. PubMed ID: 28017784 [TBL] [Abstract][Full Text] [Related]
43. Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Van Sprang PA; Verdonck FA; Van Assche F; Regoli L; De Schamphelaere KA Sci Total Environ; 2009 Oct; 407(20):5373-91. PubMed ID: 19631966 [TBL] [Abstract][Full Text] [Related]
44. Reduction of Pesticide Toxicity Under Field-Relevant Conditions? The Interaction of Titanium Dioxide Nanoparticles, Ultraviolet, and Natural Organic Matter. Lüderwald S; Meyer F; Gerstle V; Friedrichs L; Rolfing K; Schreiner VC; Bakanov N; Schulz R; Bundschuh M Environ Toxicol Chem; 2020 Nov; 39(11):2237-2246. PubMed ID: 33464613 [TBL] [Abstract][Full Text] [Related]
45. Developing species sensitivity distributions for metallic nanomaterials considering the characteristics of nanomaterials, experimental conditions, and different types of endpoints. Chen G; Peijnenburg WJGM; Xiao Y; Vijver MG Food Chem Toxicol; 2018 Feb; 112():563-570. PubMed ID: 28390859 [TBL] [Abstract][Full Text] [Related]
46. Modeling the flows of engineered nanomaterials during waste handling. Mueller NC; Buha J; Wang J; Ulrich A; Nowack B Environ Sci Process Impacts; 2013 Jan; 15(1):251-9. PubMed ID: 24592442 [TBL] [Abstract][Full Text] [Related]
47. Synergistic Bacterial Stress Results from Exposure to Nano-Ag and Nano-TiO Wilke CM; Wunderlich B; Gaillard JF; Gray KA Environ Sci Technol; 2018 Mar; 52(5):3185-3194. PubMed ID: 29393629 [TBL] [Abstract][Full Text] [Related]
48. Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Gottschalk F; Sun T; Nowack B Environ Pollut; 2013 Oct; 181():287-300. PubMed ID: 23856352 [TBL] [Abstract][Full Text] [Related]
49. A critical review on the role of abiotic factors on the transformation, environmental identity and toxicity of engineered nanomaterials in aquatic environment. Kansara K; Bolan S; Radhakrishnan D; Palanisami T; Al-Muhtaseb AH; Bolan N; Vinu A; Kumar A; Karakoti A Environ Pollut; 2022 Mar; 296():118726. PubMed ID: 34953948 [TBL] [Abstract][Full Text] [Related]
50. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Musee N Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195 [TBL] [Abstract][Full Text] [Related]
51. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Xu L; Xu M; Wang R; Yin Y; Lynch I; Liu S Small; 2020 Sep; 16(36):e2003691. PubMed ID: 32780948 [TBL] [Abstract][Full Text] [Related]
52. The antibacterial effects of engineered nanomaterials: implications for wastewater treatment plants. Musee N; Thwala M; Nota N J Environ Monit; 2011 May; 13(5):1164-83. PubMed ID: 21505709 [TBL] [Abstract][Full Text] [Related]
53. Impacts of Pristine and Transformed Ag and Cu Engineered Nanomaterials on Surficial Sediment Microbial Communities Appear Short-Lived. Moore JD; Stegemeier JP; Bibby K; Marinakos SM; Lowry GV; Gregory KB Environ Sci Technol; 2016 Mar; 50(5):2641-51. PubMed ID: 26841726 [TBL] [Abstract][Full Text] [Related]
54. Species sensitivity weighted distribution for ecological risk assessment of engineered nanomaterials: the n-TiO2 case study. Semenzin E; Lanzellotto E; Hristozov D; Critto A; Zabeo A; Giubilato E; Marcomini A Environ Toxicol Chem; 2015 Nov; 34(11):2644-59. PubMed ID: 26058704 [TBL] [Abstract][Full Text] [Related]
55. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment. Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617 [TBL] [Abstract][Full Text] [Related]
56. Stability of co-existing ZnO and TiO Fang J; Shijirbaatar A; Lin DH; Wang DJ; Shen B; Sun PD; Zhou ZQ Chemosphere; 2017 Oct; 184():1125-1133. PubMed ID: 28672693 [TBL] [Abstract][Full Text] [Related]
57. Comparison of toxicity of silver nanomaterials and silver nitrate on developing zebrafish embryos: Bioavailability, osmoregulatory and oxidative stress. Pereira SPP; Boyle D; Nogueira AJA; Handy RD Chemosphere; 2023 Sep; 336():139236. PubMed ID: 37330064 [TBL] [Abstract][Full Text] [Related]
58. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials. Judy JD; Kirby JK; McLaughlin MJ; McNear D; Bertsch PM Environ Pollut; 2016 Jul; 214():731-736. PubMed ID: 27149150 [TBL] [Abstract][Full Text] [Related]
59. Attenuation of Microbial Stress Due to Nano-Ag and Nano-TiO Wilke CM; Tong T; Gaillard JF; Gray KA Environ Sci Technol; 2016 Oct; 50(20):11302-11310. PubMed ID: 27635658 [TBL] [Abstract][Full Text] [Related]
60. Application of Isotopically Labeled Engineered Nanomaterials for Detection and Quantification in Soils via Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Bland GD; Zhang P; Valsami-Jones E; Lowry GV Environ Sci Technol; 2022 Nov; 56(22):15584-15593. PubMed ID: 36255450 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]