BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34171193)

  • 1. In Situ Assay of Proteins Incorporated with Unnatural Amino Acids in Single Living Cells by Differenced Resonance Light Scattering Correlation Spectroscopy.
    Xu J; Liu Y; Li F; Deng L; Dong C; Ren J
    Anal Chem; 2021 Jul; 93(27):9329-9336. PubMed ID: 34171193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science.
    Dong C; Ren J
    Acc Chem Res; 2023 Oct; 56(19):2582-2594. PubMed ID: 37706459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Distribution of Nanoparticles in Solution Characterized by Combining Resonance Light Scattering Correlation Spectroscopy with the Maximum Entropy Method.
    Zhang B; Liu H; Huang X; Dong C; Ren J
    Anal Chem; 2017 Nov; 89(22):12609-12616. PubMed ID: 29076722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the Protein Corona of Nanoparticles in a Fluid Flow by Single-Particle Differenced Resonance Light Scattering Correlation Spectroscopy.
    Zhang T; Dong C; Ren J
    Anal Chem; 2023 Jan; ():. PubMed ID: 36607829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.
    Liu H; Dong C; Ren J
    J Am Chem Soc; 2014 Feb; 136(7):2775-85. PubMed ID: 24460214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brightness Analysis per Moving Particle:
    Ding L; Zhang T; Dong C; Ren J
    Anal Chem; 2022 Mar; 94(12):5181-5189. PubMed ID: 35293715
    [No Abstract]   [Full Text] [Related]  

  • 8. Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes.
    Lan T; Dong C; Huang X; Ren J
    Analyst; 2011 Oct; 136(20):4247-53. PubMed ID: 21879036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS).
    Lan T; Dong C; Huang X; Ren J
    Talanta; 2013 Nov; 116():501-7. PubMed ID: 24148436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extinction, emission, and scattering spectroscopy of 5-50 nm citrate-coated gold nanoparticles: An argument for curvature effects on aggregation.
    Esfahani MR; Pallem VL; Stretz HA; Wells MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():100-109. PubMed ID: 28024243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating permissive site-specific unnatural aminoacyl-tRNA synthetases.
    Miyake-Stoner SJ; Refakis CA; Hammill JT; Lusic H; Hazen JL; Deiters A; Mehl RA
    Biochemistry; 2010 Mar; 49(8):1667-77. PubMed ID: 20082521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold Nanoparticles Conjugated with Glycopeptides for Lectin Detection and Imaging on Cell Surface.
    Tsutsumi H; Shirai T; Ohkusa H; Mihara H
    Protein Pept Lett; 2018; 25(1):84-89. PubMed ID: 29256341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies.
    Jans H; Liu X; Austin L; Maes G; Huo Q
    Anal Chem; 2009 Nov; 81(22):9425-32. PubMed ID: 19803497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing unnatural amino acid integration into enhanced green fluorescent protein by genetic code expansion with a high-throughput screening platform.
    Wandrey G; Wurzel J; Hoffmann K; Ladner T; Büchs J; Meinel L; Lühmann T
    J Biol Eng; 2016; 10():11. PubMed ID: 27733867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational incorporation of any unnatural amino acid into proteins by machine learning on existing experimental proofs.
    Zhang H; Zheng Z; Dong L; Shi N; Yang Y; Chen H; Shen Y; Xia Q
    Comput Struct Biotechnol J; 2022; 20():4930-4941. PubMed ID: 36147660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
    Wang L
    Acc Chem Res; 2017 Nov; 50(11):2767-2775. PubMed ID: 28984438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Bacterial Cells with an Active Transport System for Unnatural Amino Acids.
    Ko W; Kumar R; Kim S; Lee HS
    ACS Synth Biol; 2019 May; 8(5):1195-1203. PubMed ID: 30971082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporation of Unnatural Amino Acids into Proteins Expressed in Mammalian Cells.
    Serfling R; Coin I
    Methods Enzymol; 2016; 580():89-107. PubMed ID: 27586329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic and Hydrodynamic Characterisation of DNA-Linked Gold Nanoparticle Dimers in Solution using Two-Photon Photoluminescence.
    Midelet J; El-Sagheer AH; Brown T; Kanaras AG; Débarre A; Werts MHV
    Chemphyschem; 2018 Apr; 19(7):827-836. PubMed ID: 29465817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.