BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34171358)

  • 1. Structural basis of substrate specificity in human cytidine deaminase family APOBEC3s.
    Hou S; Lee JM; Myint W; Matsuo H; Kurt Yilmaz N; Schiffer CA
    J Biol Chem; 2021 Aug; 297(2):100909. PubMed ID: 34171358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. APOBEC3s: DNA-editing human cytidine deaminases.
    Silvas TV; Schiffer CA
    Protein Sci; 2019 Sep; 28(9):1552-1566. PubMed ID: 31241202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.
    Silvas TV; Hou S; Myint W; Nalivaika E; Somasundaran M; Kelch BA; Matsuo H; Kurt Yilmaz N; Schiffer CA
    Sci Rep; 2018 May; 8(1):7511. PubMed ID: 29760455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly-potent, synthetic APOBEC3s restrict HIV-1 through deamination-independent mechanisms.
    McDonnell MM; Karvonen SC; Gaba A; Flath B; Chelico L; Emerman M
    PLoS Pathog; 2021 Jun; 17(6):e1009523. PubMed ID: 34170969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B.
    Hou S; Silvas TV; Leidner F; Nalivaika EA; Matsuo H; Kurt Yilmaz N; Schiffer CA
    J Chem Theory Comput; 2019 Jan; 15(1):637-647. PubMed ID: 30457868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.
    Kouno T; Silvas TV; Hilbert BJ; Shandilya SMD; Bohn MF; Kelch BA; Royer WE; Somasundaran M; Kurt Yilmaz N; Matsuo H; Schiffer CA
    Nat Commun; 2017 Apr; 8():15024. PubMed ID: 28452355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into DNA substrate selection by APOBEC3G from structural, biochemical, and functional studies.
    Ziegler SJ; Liu C; Landau M; Buzovetsky O; Desimmie BA; Zhao Q; Sasaki T; Burdick RC; Pathak VK; Anderson KS; Xiong Y
    PLoS One; 2018; 13(3):e0195048. PubMed ID: 29596531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal Structure of a Soluble APOBEC3G Variant Suggests ssDNA to Bind in a Channel that Extends between the Two Domains.
    Maiti A; Myint W; Delviks-Frankenberry KA; Hou S; Kanai T; Balachandran V; Sierra Rodriguez C; Tripathi R; Kurt Yilmaz N; Pathak VK; Schiffer CA; Matsuo H
    J Mol Biol; 2020 Nov; 432(23):6042-6060. PubMed ID: 33098858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of the DNA sequence/length and pH on deaminase activity, as well as the roles of the amino acid residues around the catalytic center of APOBEC3F.
    Wan L; Nagata T; Katahira M
    Phys Chem Chem Phys; 2018 Jan; 20(5):3109-3117. PubMed ID: 28825755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APOBEC3A Loop 1 Is a Determinant for Single-Stranded DNA Binding and Deamination.
    Ziegler SJ; Hu Y; Devarkar SC; Xiong Y
    Biochemistry; 2019 Sep; 58(37):3838-3847. PubMed ID: 31448897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Magnetic Resonance Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity.
    Byeon IJ; Byeon CH; Wu T; Mitra M; Singer D; Levin JG; Gronenborn AM
    Biochemistry; 2016 May; 55(21):2944-59. PubMed ID: 27163633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer simulations explain mutation-induced effects on the DNA editing by adenine base editors.
    Rallapalli KL; Komor AC; Paesani F
    Sci Adv; 2020 Mar; 6(10):eaaz2309. PubMed ID: 32181363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the catalytically active APOBEC3G bound to a DNA oligonucleotide inhibitor reveals tetrahedral geometry of the transition state.
    Maiti A; Hedger AK; Myint W; Balachandran V; Watts JK; Schiffer CA; Matsuo H
    Nat Commun; 2022 Nov; 13(1):7117. PubMed ID: 36402773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the Embrace of a Mutator: APOBEC Selection of Nucleic Acid Ligands.
    Salter JD; Smith HC
    Trends Biochem Sci; 2018 Aug; 43(8):606-622. PubMed ID: 29803538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of antiviral DNA cytidine deaminases.
    Vasudevan AA; Smits SH; Höppner A; Häussinger D; Koenig BW; Münk C
    Biol Chem; 2013 Nov; 394(11):1357-70. PubMed ID: 23787464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Switch Regulates the DNA Cytosine Deaminase Activity of Human APOBEC3B.
    Shi K; Demir Ö; Carpenter MA; Wagner J; Kurahashi K; Harris RS; Amaro RE; Aihara H
    Sci Rep; 2017 Dec; 7(1):17415. PubMed ID: 29234087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Family-Wide Comparative Analysis of Cytidine and Methylcytidine Deamination by Eleven Human APOBEC Proteins.
    Ito F; Fu Y; Kao SA; Yang H; Chen XS
    J Mol Biol; 2017 Jun; 429(12):1787-1799. PubMed ID: 28479091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications.
    Holden LG; Prochnow C; Chang YP; Bransteitter R; Chelico L; Sen U; Stevens RC; Goodman MF; Chen XS
    Nature; 2008 Nov; 456(7218):121-4. PubMed ID: 18849968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-stranded DNA binding proteins influence APOBEC3A substrate preference.
    Brown AL; Collins CD; Thompson S; Coxon M; Mertz TM; Roberts SA
    Sci Rep; 2021 Oct; 11(1):21008. PubMed ID: 34697369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The von Hippel-Lindau Cullin-RING E3 ubiquitin ligase regulates APOBEC3 cytidine deaminases.
    Scholtes GK; Sawyer AM; Vaca CC; Clerc I; Roh M; Song C; D'Aquila RT
    Transl Res; 2021 Nov; 237():1-15. PubMed ID: 34004371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.