BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34171608)

  • 1. Release of protein-bound nerve agents by excess fluoride from whole blood: GC-MS/MS method development, validation, and application to a real-life denatured blood sample.
    Koller M; Thiermann H; Worek F; Wille T
    J Chromatogr B Analyt Technol Biomed Life Sci; 2021 Aug; 1179():122693. PubMed ID: 34171608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generic detection of organophosphorus nerve agent adducts to butyrylcholinesterase in plasma using liquid chromatography-tandem mass spectrometry combined with an improved procainamide-gel separation and pepsin digestion method.
    Liu CC; Liang LH; Yan L; Chen B; Liu XJ; Yang Y; Liu SL; Xi HL
    J Chromatogr A; 2023 May; 1697():463990. PubMed ID: 37075496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas chromatography-mass spectrometry with spiral large-volume injection for determination of fluoridated phosphonates produced by fluoride-mediated regeneration of nerve agent adduct in human serum.
    Seto Y; Kanamori-Kataoka M; Komano A; Nagoya T; Sasano R; Matsuo S
    J Chromatogr A; 2019 Jan; 1583():108-116. PubMed ID: 30470454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retrospective determination of regenerated nerve agent sarin in human blood by liquid chromatography-mass spectrometry and in vivo implementation in rabbit.
    Blanca M; Shifrovitch A; Madmon M; Elgarisi M; Dachir S; Lazar S; Baranes S; Egoz I; Avraham M; Dekel Jaoui H; Dagan S; Weissberg A
    Arch Toxicol; 2020 Jan; 94(1):103-111. PubMed ID: 31720697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of tabun, sarin, soman, cyclosarin, VR, VX, and VM adducts to tyrosine in blood products by isotope dilution UHPLC-MS/MS.
    Crow BS; Pantazides BG; Quiñones-González J; Garton JW; Carter MD; Perez JW; Watson CM; Tomcik DJ; Crenshaw MD; Brewer BN; Riches JR; Stubbs SJ; Read RW; Evans RA; Thomas JD; Blake TA; Johnson RC
    Anal Chem; 2014 Oct; 86(20):10397-405. PubMed ID: 25286390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Application of a Single-Column GC-MS-MS Method for the Rapid Analysis of Chemical Warfare Agents and Breakdown Products.
    Young SA; Capacio BR
    J Anal Toxicol; 2019 Apr; 43(3):179-187. PubMed ID: 30364974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adduct and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC-MS/MS.
    Liu CC; Huang GL; Xi HL; Liu SL; Liu JQ; Yu HL; Zhou SK; Liang LH; Yuan L
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Nov; 1036-1037():57-65. PubMed ID: 27718463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Time-concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC-MS-MS.
    Lee JY; Kim C; Lee YH
    J Anal Toxicol; 2018 Jun; 42(5):293-299. PubMed ID: 29618078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Multiple Blood Matrices for Assessment of Human Exposure to Nerve Agents.
    Schulze ND; Hamelin EI; Winkeljohn WR; Shaner RL; Basden BJ; deCastro BR; Pantazides BG; Thomas JD; Johnson RC
    J Anal Toxicol; 2016 Apr; 40(3):229-35. PubMed ID: 26861671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluoride reactivation-enabled sensitive quantification of tabun adducts on human serum albumin by GC-MS/MS via isotope dilution.
    Li XS; Wu JN; Yan L; Xing ZF; Liu CC; Chen B; Yuan L; Yang Y
    Bioanalysis; 2019 Dec; 11(23):2145-2159. PubMed ID: 31729243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of 2-(diethylamino)ethylthiol dipeptide (Cys-Pro) adduct as biomarker of nerve agents VR and CVX in human plasma using liquid chromatography-high-resolution tandem mass spectrometry.
    Baygildiev ТМ; Vokuev MF; Braun AV; Yashkir VA; Rуbalchenko IV; Rodin IA
    Anal Bioanal Chem; 2021 Mar; 413(7):1905-1916. PubMed ID: 33479815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aqueous extraction followed by derivatization and liquid chromatography-mass spectrometry analysis: A unique strategy for trace detection and identification of G-nerve agents in environmental matrices.
    Weissberg A; Madmon M; Elgarisi M; Dagan S
    J Chromatogr A; 2018 Nov; 1577():24-30. PubMed ID: 30297234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of V-type nerve agents in vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator and fluoridating conversion tube.
    Ohrui Y; Nagoya T; Kurimata N; Sodeyama M; Seto Y
    J Mass Spectrom; 2017 Jul; 52(7):472-479. PubMed ID: 28544043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of sarin and cyclosarin metabolites isopropyl methylphosphonic acid and cyclohexyl methylphosphonic acid in minipig plasma using isotope-dilution and liquid chromatography- time-of-flight mass spectrometry.
    Evans RA; Jakubowski EM; Muse WT; Matson K; Hulet SW; Mioduszewski RJ; Thomson SA; Totura AL; Renner JA; Crouse CL
    J Anal Toxicol; 2008; 32(1):78-85. PubMed ID: 18269798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve agent analogues that produce authentic soman, sarin, tabun, and cyclohexyl methylphosphonate-modified human butyrylcholinesterase.
    Gilley C; MacDonald M; Nachon F; Schopfer LM; Zhang J; Cashman JR; Lockridge O
    Chem Res Toxicol; 2009 Oct; 22(10):1680-8. PubMed ID: 19715348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of trace amounts of G-type nerve agents in aqueous samples utilizing "in vial" instantaneous derivatization and liquid chromatography-tandem mass spectrometry.
    Weissberg A; Madmon M; Elgarisi M; Dagan S
    J Chromatogr A; 2017 Aug; 1512():71-77. PubMed ID: 28712549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly sensitive retrospective determination of organophosphorous nerve agent biomarkers in human urine implemented in vivo in rabbit.
    Blanca M; Shifrovitch A; Dachir S; Lazar S; Elgarisi M; Marder D; Shamai Yamin T; Baranes S; Avraham M; Dekel Jaoui H; Dagan S; Weissberg A
    Arch Toxicol; 2020 Sep; 94(9):3033-3044. PubMed ID: 32627075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dry Blood Spot sample collection for post-exposure monitoring of chemical warfare agents - In vivo determination of phosphonic acids using LC-MS/MS.
    Yishai Aviram L; Magen M; Chapman S; Neufeld Cohen A; Lazar S; Dagan S
    J Chromatogr B Analyt Technol Biomed Life Sci; 2018 Sep; 1093-1094():60-65. PubMed ID: 29990714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modifications to the organophosphorus nerve agent-protein adduct refluoridation method for retrospective analysis of nerve agent exposures.
    Holland KE; Solano MI; Johnson RC; Maggio VL; Barr JR
    J Anal Toxicol; 2008; 32(1):116-24. PubMed ID: 18269803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of chemical warfare agents in food products by atmospheric pressure ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry.
    Kolakowski BM; D'Agostino PA; Chenier C; Mester Z
    Anal Chem; 2007 Nov; 79(21):8257-65. PubMed ID: 17896827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.