These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34171752)

  • 1. Fast linear least-squares method for ultrasound attenuation and backscatter estimation.
    Birdi J; Muraleedharan A; D'hooge J; Bertrand A
    Ultrasonics; 2021 Sep; 116():106503. PubMed ID: 34171752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous backscatter and attenuation estimation using a least squares method with constraints.
    Nam K; Zagzebski JA; Hall TJ
    Ultrasound Med Biol; 2011 Dec; 37(12):2096-104. PubMed ID: 21963038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially Variant Ultrasound Attenuation Mapping Using a Regularized Linear Least-Squares Approach.
    Birdi J; D'hooge J; Bertrand A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1596-1609. PubMed ID: 35263252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Variance Estimation of Backscatter Quantitative Ultrasound Parameters Using Dynamic Programming.
    Vajihi Z; Rosado-Mendez IM; Hall TJ; Rivaz H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2042-2053. PubMed ID: 30222558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuation and backscatter estimation using video signal analysis applied to B-mode images.
    Knipp BS; Zagzebski JA; Wilson TA; Dong F; Madsen EL
    Ultrason Imaging; 1997 Jul; 19(3):221-33. PubMed ID: 9447670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trade-offs in data acquisition and processing parameters for backscatter and scatterer size estimations.
    Liu W; Zagzebski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):340-52. PubMed ID: 20178900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative assessment of in vivo breast masses using ultrasound attenuation and backscatter.
    Nam K; Zagzebski JA; Hall TJ
    Ultrason Imaging; 2013 Apr; 35(2):146-61. PubMed ID: 23493613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultrasound attenuation and backscatter estimates in layered tissue-mimicking phantoms among three clinical scanners.
    Nam K; Rosado-Mendez IM; Wirtzfeld LA; Ghoshal G; Pawlicki AD; Madsen EL; Lavarello RJ; Oelze ML; Zagzebski JA; O'Brien WD; Hall TJ
    Ultrason Imaging; 2012 Oct; 34(4):209-21. PubMed ID: 23160474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the impact of backscatter intensity variations on ultrasound attenuation estimation.
    Omari EA; Varghese T; Madsen EL; Frank G
    Med Phys; 2013 Aug; 40(8):082904. PubMed ID: 23927359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of Cortical Bone Microstructure From Ultrasound Backscatter.
    Iori G; Du J; Hackenbeck J; Kilappa V; Raum K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1081-1095. PubMed ID: 33104498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of total attenuation and scatterer size from backscattered ultrasound waveforms.
    Bigelow TA; Oelze ML; O'Brien WD
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1431-9. PubMed ID: 15807030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance evaluation of the spectral centroid downshift method for attenuation estimation.
    Samimi K; Varghese T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):871-80. PubMed ID: 25965681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytic Global Regularized Backscatter Quantitative Ultrasound.
    Jafarpisheh N; Hall TJ; Rivaz H; Rosado-Mendez IM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1605-1617. PubMed ID: 33284753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backscatter-contour-attenuation joint estimation model for attenuation compensation in ultrasound imagery.
    Yu Y; Wang J
    IEEE Trans Image Process; 2010 Oct; 19(10):2725-36. PubMed ID: 20483684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularized Estimation of Effective Scatterer Size and Acoustic Concentration Quantitative Ultrasound Parameters Using Dynamic Programming
    Jafarpisheh N; Rosado-Mendez IM; Hall TJ; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():13-16. PubMed ID: 33017919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency dependence of ultrasound attenuation and backscatter in breast tissue.
    D'Astous FT; Foster FS
    Ultrasound Med Biol; 1986 Oct; 12(10):795-808. PubMed ID: 3541334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. US backscatter and attenuation 30 to 50 MHz and MR T2 at 3 Tesla for differentiation of atherosclerotic artery constituents in vitro.
    Bridal SL; Toussaint JF; Raynaud JS; Fornes P; Leroy-Willig A; Berger G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1517-25. PubMed ID: 18249999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of fatty proportion in fatty liver using least squares method with constraints.
    Li X; Deng Y; Yu J; Wang Y; Shamdasani V
    Biomed Mater Eng; 2014; 24(6):2811-20. PubMed ID: 25226986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis.
    Omura M; Yoshida K; Akita S; Yamaguchi T
    J Med Ultrason (2001); 2020 Jan; 47(1):25-34. PubMed ID: 31515646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid spectral domain method for attenuation slope estimation.
    Kim H; Varghese T
    Ultrasound Med Biol; 2008 Nov; 34(11):1808-19. PubMed ID: 18621468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.