These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 34171756)

  • 41. Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained From Co-Occurrence Networks.
    Díaz-Santiago E; Claros MG; Yahyaoui R; de Diego-Otero Y; Calvo R; Hoenicka J; Palau F; Ranea JAG; Perkins JR
    Front Mol Biosci; 2021; 8():635074. PubMed ID: 34046427
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.
    Bergman A; Atzmon G; Ye K; MacCarthy T; Barzilai N
    PLoS Comput Biol; 2007 Aug; 3(8):e170. PubMed ID: 17784782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM.
    Zhang-James Y; Faraone SV
    Am J Med Genet B Neuropsychiatr Genet; 2016 Jul; 171(5):641-9. PubMed ID: 26288127
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Linking the clinical vocabulary of diseases to the genes by mapping UMLS to OMIM allelic variant fields.
    Hishiki T; Tamada I
    AMIA Annu Symp Proc; 2007 Oct; ():976. PubMed ID: 18694076
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Text-based analysis of genes, proteins, aging, and cancer.
    Semeiks JR; Grate LR; Mian IS
    Mech Ageing Dev; 2005 Jan; 126(1):193-208. PubMed ID: 15610779
    [TBL] [Abstract][Full Text] [Related]  

  • 46. HPOSim: an R package for phenotypic similarity measure and enrichment analysis based on the human phenotype ontology.
    Deng Y; Gao L; Wang B; Guo X
    PLoS One; 2015; 10(2):e0115692. PubMed ID: 25664462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TP53 mutations, expression and interaction networks in human cancers.
    Wang X; Sun Q
    Oncotarget; 2017 Jan; 8(1):624-643. PubMed ID: 27880943
    [TBL] [Abstract][Full Text] [Related]  

  • 48. GPAD: a natural language processing-based application to extract the gene-disease association discovery information from OMIM.
    Rahit KMTH; Avramovic V; Chong JX; Tarailo-Graovac M
    BMC Bioinformatics; 2024 Feb; 25(1):84. PubMed ID: 38413851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Searching Online Mendelian Inheritance in Man (OMIM) for information for genetic loci involved in human disease.
    Baxevanis AD
    Curr Protoc Bioinformatics; 2002 Aug; Chapter 1():Unit 1.2. PubMed ID: 18792932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clustering analysis of large-scale phenotypic data in the model filamentous fungus Neurospora crassa.
    Carrillo AJ; Cabrera IE; Spasojevic MJ; Schacht P; Stajich JE; Borkovich KA
    BMC Genomics; 2020 Nov; 21(1):755. PubMed ID: 33138786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. PhenPath: a tool for characterizing biological functions underlying different phenotypes.
    Babbi G; Martelli PL; Casadio R
    BMC Genomics; 2019 Jul; 20(Suppl 8):548. PubMed ID: 31307376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Biological aspects of longevity and ageing].
    Kappeler L; Epelbaum J
    Rev Epidemiol Sante Publique; 2005 Jun; 53(3):235-41. PubMed ID: 16227910
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mining OMIM for insight into complex diseases.
    Cantor MN; Lussier YA
    Stud Health Technol Inform; 2004; 107(Pt 2):753-7. PubMed ID: 15360913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes.
    Tacutu R; Budovsky A; Fraifeld VE
    Biogerontology; 2010 Aug; 11(4):513-22. PubMed ID: 20186480
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative analysis of weighted gene co-expression networks in human and mouse.
    Eidsaa M; Stubbs L; Almaas E
    PLoS One; 2017; 12(11):e0187611. PubMed ID: 29161290
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.
    Wu M; Lin Z; Ma S; Chen T; Jiang R; Wong WH
    J Mol Cell Biol; 2017 Dec; 9(6):436-452. PubMed ID: 29300920
    [TBL] [Abstract][Full Text] [Related]  

  • 58. SCNrank: spectral clustering for network-based ranking to reveal potential drug targets and its application in pancreatic ductal adenocarcinoma.
    Liu E; Zhang ZZ; Cheng X; Liu X; Cheng L
    BMC Med Genomics; 2020 Apr; 13(Suppl 5):50. PubMed ID: 32241274
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Disease Gene Prediction by Integrating PPI Networks, Clinical RNA-Seq Data and OMIM Data.
    Luo P; Tian LP; Ruan J; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):222-232. PubMed ID: 29990218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.