These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 34172584)
1. Structural differences in the FAD-binding pockets and lid loops of mammalian CRY1 and CRY2 for isoform-selective regulation. Miller S; Srivastava A; Nagai Y; Aikawa Y; Tama F; Hirota T Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34172584 [TBL] [Abstract][Full Text] [Related]
2. Isoform-selective regulation of mammalian cryptochromes. Miller S; Son YL; Aikawa Y; Makino E; Nagai Y; Srivastava A; Oshima T; Sugiyama A; Hara A; Abe K; Hirata K; Oishi S; Hagihara S; Sato A; Tama F; Itami K; Kay SA; Hatori M; Hirota T Nat Chem Biol; 2020 Jun; 16(6):676-685. PubMed ID: 32231341 [TBL] [Abstract][Full Text] [Related]
3. CRY2 isoform selectivity of a circadian clock modulator with antiglioblastoma efficacy. Miller S; Kesherwani M; Chan P; Nagai Y; Yagi M; Cope J; Tama F; Kay SA; Hirota T Proc Natl Acad Sci U S A; 2022 Oct; 119(40):e2203936119. PubMed ID: 36161947 [TBL] [Abstract][Full Text] [Related]
4. Effects of cryptochrome-modulating compounds on circadian behavioural rhythms in zebrafish. Iida M; Nakane Y; Yoshimura T; Hirota T J Biochem; 2022 May; 171(5):501-507. PubMed ID: 34528676 [TBL] [Abstract][Full Text] [Related]
5. Structural and Chemical Biology Approaches Reveal Isoform-Selective Mechanisms of Ligand Interactions in Mammalian Cryptochromes. Miller S; Hirota T Front Physiol; 2022; 13():837280. PubMed ID: 35153842 [TBL] [Abstract][Full Text] [Related]
6. A methylbenzimidazole derivative regulates mammalian circadian rhythms by targeting Cryptochrome proteins. Yagi M; Miller S; Nagai Y; Inuki S; Sato A; Hirota T F1000Res; 2022; 11():1016. PubMed ID: 36226040 [No Abstract] [Full Text] [Related]
7. An Isoform-Selective Modulator of Cryptochrome 1 Regulates Circadian Rhythms in Mammals. Miller S; Aikawa Y; Sugiyama A; Nagai Y; Hara A; Oshima T; Amaike K; Kay SA; Itami K; Hirota T Cell Chem Biol; 2020 Sep; 27(9):1192-1198.e5. PubMed ID: 32502390 [TBL] [Abstract][Full Text] [Related]
8. Elucidating TH301's influence on the torsion angle of CRY1 W399 using replica exchange with solute tempering (REST) molecular dynamics (MD) simulations. Cho Y; Li K; Lee JH; Pack SP; Cho AE Phys Chem Chem Phys; 2023 Dec; 25(47):32648-32655. PubMed ID: 38010133 [TBL] [Abstract][Full Text] [Related]
9. SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket. Xing W; Busino L; Hinds TR; Marionni ST; Saifee NH; Bush MF; Pagano M; Zheng N Nature; 2013 Apr; 496(7443):64-8. PubMed ID: 23503662 [TBL] [Abstract][Full Text] [Related]
10. The Arg-293 of Cryptochrome1 is responsible for the allosteric regulation of CLOCK-CRY1 binding in circadian rhythm. Gul S; Aydin C; Ozcan O; Gurkan B; Surme S; Baris I; Kavakli IH J Biol Chem; 2020 Dec; 295(50):17187-17199. PubMed ID: 33028638 [TBL] [Abstract][Full Text] [Related]
11. Photopharmacological Manipulation of Mammalian CRY1 for Regulation of the Circadian Clock. Kolarski D; Miller S; Oshima T; Nagai Y; Aoki Y; Kobauri P; Srivastava A; Sugiyama A; Amaike K; Sato A; Tama F; Szymanski W; Feringa BL; Itami K; Hirota T J Am Chem Soc; 2021 Feb; 143(4):2078-2087. PubMed ID: 33464888 [TBL] [Abstract][Full Text] [Related]
12. Structural insights into BIC-mediated inactivation of Arabidopsis cryptochrome 2. Ma L; Wang X; Guan Z; Wang L; Wang Y; Zheng L; Gong Z; Shen C; Wang J; Zhang D; Liu Z; Yin P Nat Struct Mol Biol; 2020 May; 27(5):472-479. PubMed ID: 32398826 [TBL] [Abstract][Full Text] [Related]
13. Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function. Khan SK; Xu H; Ukai-Tadenuma M; Burton B; Wang Y; Ueda HR; Liu AC J Biol Chem; 2012 Jul; 287(31):25917-26. PubMed ID: 22692217 [TBL] [Abstract][Full Text] [Related]
14. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1. Michael AK; Fribourgh JL; Chelliah Y; Sandate CR; Hura GL; Schneidman-Duhovny D; Tripathi SM; Takahashi JS; Partch CL Proc Natl Acad Sci U S A; 2017 Feb; 114(7):1560-1565. PubMed ID: 28143926 [TBL] [Abstract][Full Text] [Related]
18. The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1. Parico GCG; Perez I; Fribourgh JL; Hernandez BN; Lee HW; Partch CL Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27971-27979. PubMed ID: 33106415 [TBL] [Abstract][Full Text] [Related]
19. Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Li X; Wang Q; Yu X; Liu H; Yang H; Zhao C; Liu X; Tan C; Klejnot J; Zhong D; Lin C Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20844-9. PubMed ID: 22139370 [TBL] [Abstract][Full Text] [Related]
20. Suppression of circadian clock protein cryptochrome 2 promotes osteoarthritis. Bekki H; Duffy T; Okubo N; Olmer M; Alvarez-Garcia O; Lamia K; Kay S; Lotz M Osteoarthritis Cartilage; 2020 Jul; 28(7):966-976. PubMed ID: 32339698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]