These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 34172663)

  • 1. A Novel 3D-Printed Head Holder for Guinea Pig Ear Surgery.
    Valentini C; Ryu YJ; Szeto B; Yu M; Lalwani AK; Kysar J
    Otol Neurotol; 2021 Oct; 42(9):e1197-e1202. PubMed ID: 34172663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A self-adjusting head holder without ear-bars for guinea pigs.
    Haidarliu S; Ahissar E; Saraf-Sinik I
    J Physiol Sci; 2018 Nov; 68(6):875-880. PubMed ID: 29680978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of patient head motion in otologic surgery: Implications for TEES.
    Berges AJ; Razavi C; Shahbazi M; Taylor R; Carey JP; Creighton FX
    Am J Otolaryngol; 2021; 42(2):102875. PubMed ID: 33418180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical Note: Immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device.
    Zarghami N; Jensen MD; Talluri S; Foster PJ; Chambers AF; Dick FA; Wong E
    Med Phys; 2015 Nov; 42(11):6507-13. PubMed ID: 26520740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of patient head motion in otologic surgery: Implications for TEES.
    Berges AJ; Razavi C; Shahbazi M; Taylor R; Carey JP; Creighton FX
    Am J Otolaryngol; 2021; 42(1):102827. PubMed ID: 33181483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new temporal bone and cadaver head holder for temporal bone surgical technique training.
    Feng G; Lv W; Tian X; Wu H; Gao Z
    ORL J Otorhinolaryngol Relat Spec; 2013; 75(6):325-31. PubMed ID: 24356055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed pediatric endoscopic ear surgery simulator for surgical training.
    Barber SR; Kozin ED; Dedmon M; Lin BM; Lee K; Sinha S; Black N; Remenschneider AK; Lee DJ
    Int J Pediatr Otorhinolaryngol; 2016 Nov; 90():113-118. PubMed ID: 27729115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing scanning electron microscopy sample holders: A quick and cost effective alternative for custom holder fabrication.
    Meloni GN; Bertotti M
    PLoS One; 2017; 12(7):e0182000. PubMed ID: 28753638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D-printed modular device for imaging the brain of small birds.
    Lattin CR; Emerson MA; Gallezot JD; Mulnix T; Brown JE; Carson RE
    J Neurosci Methods; 2018 Jan; 293():183-190. PubMed ID: 28988856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proposal of a Budget-Friendly Camera Holder for Endoscopic Ear Surgery.
    Ozturan O; Yenigun A; Aksoy F; Ertas B
    J Craniofac Surg; 2018 Jan; 29(1):e47-e49. PubMed ID: 29040142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Microneedles Create Precise Perforations in Human Round Window Membrane in Situ.
    Chiang H; Yu M; Aksit A; Wang W; Stern-Shavit S; Kysar JW; Lalwani AK
    Otol Neurotol; 2020 Feb; 41(2):277-284. PubMed ID: 31746817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Materials Used for 3D-Printing Temporal Bone Models to Simulate Surgical Dissection.
    McMillan A; Kocharyan A; Dekker SE; Kikano EG; Garg A; Huang VW; Moon N; Cooke M; Mowry SE
    Ann Otol Rhinol Laryngol; 2020 Dec; 129(12):1168-1173. PubMed ID: 32363889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-source hardware designs for MRI of mice, rats, and marmosets: Integrated animal holders and radiofrequency coils.
    Gilbert KM; Schaeffer DJ; Gati JS; Klassen LM; Everling S; Menon RS
    J Neurosci Methods; 2019 Jan; 312():65-72. PubMed ID: 30468825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new endoscope holder for head and neck surgery--from the technical design concept to implementation.
    Kristin J; Kolmer A; Kraus P; Geiger R; Klenzner T
    Eur Arch Otorhinolaryngol; 2015 May; 272(5):1239-44. PubMed ID: 24760308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adequate head-holder to be used in auditory and posterior cranial fossa research. Technical note.
    Velluti R; Platas A; Iglesias L
    Acta Neurol Latinoam; 1980; 26(2):129-31. PubMed ID: 6758466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octylcyanoacrylate: a new medical-grade adhesive for otologic surgery.
    Maw JL; Kartush JM; Bouchard K; Raphael Y
    Am J Otol; 2000 May; 21(3):310-4. PubMed ID: 10821541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A MRI-compatible stereotaxic localizer box enables high-precision stereotaxic procedures in pigs.
    Bjarkam CR; Cancian G; Larsen M; Rosendahl F; Ettrup KS; Zeidler D; Blankholm AD; Østergaard L; Sunde N; Sørensen JC
    J Neurosci Methods; 2004 Oct; 139(2):293-8. PubMed ID: 15488243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of 3D-printed middle ear prostheses in partial ossicular chain reconstruction.
    Heikkinen AK; Lähde S; Rissanen V; Salmi M; Aarnisalo AA; Mäkitie A; Sivonen V; Sinkkonen ST
    Int J Bioprint; 2023; 9(4):727. PubMed ID: 37323487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Low-Shrinkage Resin for 3D Printing.
    Ling L; Taremi N; Malyala R
    J Dent; 2022 Mar; 118():103957. PubMed ID: 35038476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depression of the guinea pig cochlear temperature caused by anesthesia and ventral-approach ear surgery.
    Nuttall AL; La Rouere MJ
    J Acoust Soc Am; 1980 Aug; 68(2):489-93. PubMed ID: 7419809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.