BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 34172751)

  • 1. Structure and transport mechanism of P5B-ATPases.
    Li P; Wang K; Salustros N; Grønberg C; Gourdon P
    Nat Commun; 2021 Jun; 12(1):3973. PubMed ID: 34172751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of polyamine transport by human ATP13A2 (PARK9).
    Sim SI; von Bülow S; Hummer G; Park E
    Mol Cell; 2021 Nov; 81(22):4635-4649.e8. PubMed ID: 34715013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2.
    Tillinghast J; Drury S; Bowser D; Benn A; Lee KPK
    Mol Cell; 2021 Nov; 81(22):4650-4662.e4. PubMed ID: 34715014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkinson disease related ATP13A2 evolved early in animal evolution.
    Sørensen DM; Holemans T; van Veen S; Martin S; Arslan T; Haagendahl IW; Holen HW; Hamouda NN; Eggermont J; Palmgren M; Vangheluwe P
    PLoS One; 2018; 13(3):e0193228. PubMed ID: 29505581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2.
    Tomita A; Daiho T; Kusakizako T; Yamashita K; Ogasawara S; Murata T; Nishizawa T; Nureki O
    Mol Cell; 2021 Dec; 81(23):4799-4809.e5. PubMed ID: 34798056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress.
    Vrijsen S; Besora-Casals L; van Veen S; Zielich J; Van den Haute C; Hamouda NN; Fischer C; Ghesquière B; Tournev I; Agostinis P; Baekelandt V; Eggermont J; Lambie E; Martin S; Vangheluwe P
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31198-31207. PubMed ID: 33229544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP13A2 deficiency disrupts lysosomal polyamine export.
    van Veen S; Martin S; Van den Haute C; Benoy V; Lyons J; Vanhoutte R; Kahler JP; Decuypere JP; Gelders G; Lambie E; Zielich J; Swinnen JV; Annaert W; Agostinis P; Ghesquière B; Verhelst S; Baekelandt V; Eggermont J; Vangheluwe P
    Nature; 2020 Feb; 578(7795):419-424. PubMed ID: 31996848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. P5-ATPases: Structure, substrate specificities, and transport mechanisms.
    Sim SI; Park E
    Curr Opin Struct Biol; 2023 Apr; 79():102531. PubMed ID: 36724561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational cycle of human polyamine transporter ATP13A2.
    Mu J; Xue C; Fu L; Yu Z; Nie M; Wu M; Chen X; Liu K; Bu R; Huang Y; Yang B; Han J; Jiang Q; Chan KC; Zhou R; Li H; Huang A; Wang Y; Liu Z
    Nat Commun; 2023 Apr; 14(1):1978. PubMed ID: 37031211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for modulators of spermine tolerance identifies Sky1, the SR protein kinase of Saccharomyces cerevisiae, as a regulator of polyamine transport and ion homeostasis.
    Erez O; Kahana C
    Mol Cell Biol; 2001 Jan; 21(1):175-84. PubMed ID: 11113192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake.
    De La Hera DP; Corradi GR; Adamo HP; De Tezanos Pinto F
    Biochem J; 2013 Feb; 450(1):47-53. PubMed ID: 23205587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2.
    Chen X; Zhou M; Zhang S; Yin J; Zhang P; Xuan X; Wang P; Liu Z; Zhou B; Yang M
    Cell Discov; 2021 Nov; 7(1):106. PubMed ID: 34728622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP13A2 Regulates Cellular α-Synuclein Multimerization, Membrane Association, and Externalization.
    Si J; Van den Haute C; Lobbestael E; Martin S; van Veen S; Vangheluwe P; Baekelandt V
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33799982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding and intracellular transport of the yeast plasma-membrane H(+)-ATPase: effects of mutations in KAR2 and SEC65.
    Chang A; Rose MD; Slayman CW
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5808-12. PubMed ID: 8516333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hereditary Parkinsonism-Associated Genetic Variations in PARK9 Locus Lead to Functional Impairment of ATPase Type 13A2.
    Park JS; Sue CM
    Curr Protein Pept Sci; 2017; 18(7):725-732. PubMed ID: 26965689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of the Parkinson's disease gene PARK9 in essential cellular pathways and the manganese homeostasis network in yeast.
    Chesi A; Kilaru A; Fang X; Cooper AA; Gitler AD
    PLoS One; 2012; 7(3):e34178. PubMed ID: 22457822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyamine Transport Assay Using Reconstituted Yeast Membranes.
    Van Veen S; Martin S; Schuermans M; Vangheluwe P
    Bio Protoc; 2021 Jan; 11(2):e3888. PubMed ID: 33732777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P5B-ATPases in the mammalian polyamine transport system and their role in disease.
    Azfar M; van Veen S; Houdou M; Hamouda NN; Eggermont J; Vangheluwe P
    Biochim Biophys Acta Mol Cell Res; 2022 Dec; 1869(12):119354. PubMed ID: 36064065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lipid switch unlocks Parkinson's disease-associated ATP13A2.
    Holemans T; Sørensen DM; van Veen S; Martin S; Hermans D; Kemmer GC; Van den Haute C; Baekelandt V; Günther Pomorski T; Agostinis P; Wuytack F; Palmgren M; Eggermont J; Vangheluwe P
    Proc Natl Acad Sci U S A; 2015 Jul; 112(29):9040-5. PubMed ID: 26134396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis.
    Marcos AL; Corradi GR; Mazzitelli LR; Casali CI; Fernández Tome MDC; Adamo HP; de Tezanos Pinto F
    Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182993. PubMed ID: 31132336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.