BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34172975)

  • 1. Cytosine and adenosine base editing in human pluripotent stem cells using transient reporters for editing enrichment.
    Tekel SJ; Brookhouser N; Standage-Beier K; Wang X; Brafman DA
    Nat Protoc; 2021 Jul; 16(7):3596-3624. PubMed ID: 34172975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BIG-TREE: Base-Edited Isogenic hPSC Line Generation Using a Transient Reporter for Editing Enrichment.
    Brookhouser N; Tekel SJ; Standage-Beier K; Nguyen T; Schwarz G; Wang X; Brafman DA
    Stem Cell Reports; 2020 Feb; 14(2):184-191. PubMed ID: 32004495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cas9-mediated adenosine transient reporter enables enrichment of ABE-targeted cells.
    Brookhouser N; Nguyen T; Tekel SJ; Standage-Beier K; Wang X; Brafman DA
    BMC Biol; 2020 Dec; 18(1):193. PubMed ID: 33317513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A transient reporter for editing enrichment (TREE) in human cells.
    Standage-Beier K; Tekel SJ; Brookhouser N; Schwarz G; Nguyen T; Wang X; Brafman DA
    Nucleic Acids Res; 2019 Nov; 47(19):e120. PubMed ID: 31428784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.
    Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene editing and clonal isolation of human induced pluripotent stem cells using CRISPR/Cas9.
    Yumlu S; Stumm J; Bashir S; Dreyer AK; Lisowski P; Danner E; Kühn R
    Methods; 2017 May; 121-122():29-44. PubMed ID: 28522326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and Efficient Generation of Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing.
    Nami F; Ramezankhani R; Vandenabeele M; Vervliet T; Vogels K; Urano F; Verfaillie C
    CRISPR J; 2021 Aug; 4(4):502-518. PubMed ID: 34406036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing.
    McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z
    Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. sgBE: a structure-guided design of sgRNA architecture specifies base editing window and enables simultaneous conversion of cytosine and adenosine.
    Wang Y; Zhou L; Tao R; Liu N; Long J; Qin F; Tang W; Yang Y; Chen Q; Yao S
    Genome Biol; 2020 Aug; 21(1):222. PubMed ID: 32859244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-based Targeted Genome Editing for the Development of Monogenic Diseases Models with Human Pluripotent Stem Cells.
    Gupta N; Susa K; Yoda Y; Bonventre JV; Valerius MT; Morizane R
    Curr Protoc Stem Cell Biol; 2018 May; 45(1):e50. PubMed ID: 30040245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient inhibition of p53 enhances prime editing and cytosine base-editing efficiencies in human pluripotent stem cells.
    Li M; Zhong A; Wu Y; Sidharta M; Beaury M; Zhao X; Studer L; Zhou T
    Nat Commun; 2022 Oct; 13(1):6354. PubMed ID: 36302757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol for scarless genome editing of human pluripotent stem cell based on orthogonal selective reporters.
    Zhao Y; Pan Z; Hong Z; Sun M; Hong Y; Peng X; Li X; Wang X; Wang K
    STAR Protoc; 2024 Jun; 5(2):103084. PubMed ID: 38787727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing.
    Chadwick AC; Wang X; Musunuru K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1741-1747. PubMed ID: 28751571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Protocols for CRISPR/Cas9-based Gene Editing in Human Pluripotent Stem Cells.
    Santos DP; Kiskinis E; Eggan K; Merkle FT
    Curr Protoc Stem Cell Biol; 2016 Aug; 38():5B.6.1-5B.6.60. PubMed ID: 27532820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Base Editing in Human Cells to Produce Single-Nucleotide-Variant Clonal Cell Lines.
    Vasquez CA; Cowan QT; Komor AC
    Curr Protoc Mol Biol; 2020 Dec; 133(1):e129. PubMed ID: 33151638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Off-Target Editing by CRISPR-Guided DNA Base Editors.
    Park S; Beal PA
    Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PINE-TREE enables highly efficient genetic modification of human cell lines.
    Frisch C; Kostes WW; Galyon B; Whitman B; Tekel SJ; Standage-Beier K; Srinivasan G; Wang X; Brafman DA
    Mol Ther Nucleic Acids; 2023 Sep; 33():483-492. PubMed ID: 37588683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise and efficient scarless genome editing in stem cells using CORRECT.
    Kwart D; Paquet D; Teo S; Tessier-Lavigne M
    Nat Protoc; 2017 Feb; 12(2):329-354. PubMed ID: 28102837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.