These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 34173326)

  • 1. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.
    Lapomarda A; Cerqueni G; Geven MA; Chiesa I; De Acutis A; De Blasi M; Montemurro F; De Maria C; Mattioli-Belmonte M; Vozzi G
    Macromol Biosci; 2021 Sep; 21(9):e2100168. PubMed ID: 34173326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink.
    Lapomarda A; Pulidori E; Cerqueni G; Chiesa I; De Blasi M; Geven MA; Montemurro F; Duce C; Mattioli-Belmonte M; Tiné MR; Vozzi G; De Maria C
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34198912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application.
    Lapomarda A; De Acutis A; Chiesa I; Fortunato GM; Montemurro F; De Maria C; Mattioli Belmonte M; Gottardi R; Vozzi G
    Biomacromolecules; 2020 Feb; 21(2):319-327. PubMed ID: 31808680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status.
    Das S; Jegadeesan JT; Basu B
    Biomacromolecules; 2024 Apr; 25(4):2156-2221. PubMed ID: 38507816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering.
    Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR
    Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
    Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M
    Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Concentration Gelatin Methacryloyl Hydrogel with Tunable 3D Extrusion Printability and Cytocompatibility: Exploring Quantitative Process Science and Biophysical Properties.
    Das S; Valoor R; Ratnayake P; Basu B
    ACS Appl Bio Mater; 2024 May; 7(5):2809-2835. PubMed ID: 38602318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs.
    Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT
    ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering.
    Gupta D; Vashisth P; Bellare J
    Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue.
    Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ
    Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting.
    Bedell ML; Torres AL; Hogan KJ; Wang Z; Wang B; Melchiorri AJ; Grande-Allen KJ; Mikos AG
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation and characterization of gelatin methacrylamide-hydroxypropyl methacrylate based bioink for bioprinting applications.
    Kallingal N; Ramakrishnan R; Krishnan V K
    J Biomater Sci Polym Ed; 2023 Apr; 34(6):768-790. PubMed ID: 36346058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation.
    Martyniak K; Lokshina A; Cruz MA; Karimzadeh M; Kemp R; Kean TJ
    Acta Biomater; 2022 Oct; 152():221-234. PubMed ID: 36049623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions.
    Asim S; Tabish TA; Liaqat U; Ozbolat IT; Rizwan M
    Adv Healthc Mater; 2023 Jul; 12(17):e2203148. PubMed ID: 36802199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cross-linking on the dimensional stability and biocompatibility of a tailored 3D-bioprinted gelatin scaffold.
    Choi DJ; Kho Y; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Biol Macromol; 2019 Aug; 135():659-667. PubMed ID: 31150670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.