BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34173352)

  • 1. Self-assembling protein nanocages for modular enzyme assembly by orthogonal bioconjugation.
    Berckman EA; Chen W
    Biotechnol Prog; 2021 Sep; 37(5):e3190. PubMed ID: 34173352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A modular approach for dCas9-mediated enzyme cascading
    Berckman EA; Chen W
    Chem Commun (Camb); 2020 Sep; 56(77):11426-11428. PubMed ID: 32840530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymeric SpyCatcher Scaffold Enables Bioconjugation in a Ratio-Controllable Manner.
    Jia L; Minamihata K; Ichinose H; Tsumoto K; Kamiya N
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28960874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly.
    Lv C; Zhang X; Liu Y; Zhang T; Chen H; Zang J; Zheng B; Zhao G
    Chem Soc Rev; 2021 Mar; 50(6):3957-3989. PubMed ID: 33587075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Multienzyme Nanostructures on Synthetic Protein Scaffolds.
    Liu Z; Cao S; Liu M; Kang W; Xia J
    ACS Nano; 2019 Oct; 13(10):11343-11352. PubMed ID: 31498583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpyTag/SpyCatcher Functionalization of E2 Nanocages with Stimuli-Responsive Z-ELP Affinity Domains for Tunable Monoclonal Antibody Binding and Precipitation Properties.
    Swartz AR; Chen W
    Bioconjug Chem; 2018 Sep; 29(9):3113-3120. PubMed ID: 30096233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HaloTag mediated artificial cellulosome assembly on a rolling circle amplification DNA template for efficient cellulose hydrolysis.
    Sun Q; Chen W
    Chem Commun (Camb); 2016 May; 52(40):6701-4. PubMed ID: 27117678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA materials: bridging nanotechnology and biotechnology.
    Yang D; Hartman MR; Derrien TL; Hamada S; An D; Yancey KG; Cheng R; Ma M; Luo D
    Acc Chem Res; 2014 Jun; 47(6):1902-11. PubMed ID: 24884022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis.
    Wieczorek AS; Martin VJ
    Microb Cell Fact; 2010 Sep; 9():69. PubMed ID: 20840763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virus scaffolds as enzyme nano-carriers.
    Cardinale D; Carette N; Michon T
    Trends Biotechnol; 2012 Jul; 30(7):369-76. PubMed ID: 22560649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting dCas9 fusion proteins for dynamic assembly of synthetic metabolons.
    Berckman EA; Chen W
    Chem Commun (Camb); 2019 Jul; 55(57):8219-8222. PubMed ID: 31210215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular Organization of the Thermobifida fusca Exoglucanase Cel6B Impacts Cellulose Hydrolysis and Designer Cellulosome Efficiency.
    Setter-Lamed E; Moraïs S; Stern J; Lamed R; Bayer EA
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28901714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher.
    Reddington SC; Howarth M
    Curr Opin Chem Biol; 2015 Dec; 29():94-9. PubMed ID: 26517567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functionalization of protein-based nanocages for drug delivery applications.
    Schoonen L; van Hest JC
    Nanoscale; 2014 Jul; 6(13):7124-41. PubMed ID: 24860847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoreactor Design Based on Self-Assembling Protein Nanocages.
    Ren H; Zhu S; Zheng G
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis.
    Sun Q; Madan B; Tsai SL; DeLisa MP; Chen W
    Chem Commun (Camb); 2014 Feb; 50(12):1423-5. PubMed ID: 24350330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoengineering Carboxysome Shells for Protein Cages with Programmable Cargo Targeting.
    Li T; Chang P; Chen W; Shi Z; Xue C; Dykes GF; Huang F; Wang Q; Liu LN
    ACS Nano; 2024 Mar; 18(10):7473-7484. PubMed ID: 38326220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designed proteins induce the formation of nanocage-containing extracellular vesicles.
    Votteler J; Ogohara C; Yi S; Hsia Y; Nattermann U; Belnap DM; King NP; Sundquist WI
    Nature; 2016 Dec; 540(7632):292-295. PubMed ID: 27919066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Programmable assembly of 2D crystalline protein arrays into covalently stacked 3D bionanomaterials.
    Manea F; Garda VG; Rad B; Ajo-Franklin CM
    Biotechnol Bioeng; 2020 Apr; 117(4):912-923. PubMed ID: 31885073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organizing protein-DNA hybrids as nanostructures with programmed functionalities.
    Teller C; Willner I
    Trends Biotechnol; 2010 Dec; 28(12):619-28. PubMed ID: 21035218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.