These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 3417351)
1. Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Lodge J; Jacobson GR Infect Immun; 1988 Oct; 56(10):2594-600. PubMed ID: 3417351 [TBL] [Abstract][Full Text] [Related]
2. Evidence that a low-affinity sucrose phosphotransferase activity in Streptococcus mutans GS-5 is a high-affinity trehalose uptake system. Poy F; Jacobson GR Infect Immun; 1990 May; 58(5):1479-80. PubMed ID: 2323827 [TBL] [Abstract][Full Text] [Related]
3. Effect of growth conditions on sucrose phosphotransferase activity of Streptococcus mutans. Slee AM; Tanzer JM Infect Immun; 1980 Mar; 27(3):922-7. PubMed ID: 7380558 [TBL] [Abstract][Full Text] [Related]
4. Properties of Streptococcus mutans Ingbritt growing on limiting sucrose in a chemostat: repression of the phosphoenolpyruvate phosphotransferase transport system. Ellwood DC; Hamilton IR Infect Immun; 1982 May; 36(2):576-81. PubMed ID: 7085072 [TBL] [Abstract][Full Text] [Related]
5. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250 [TBL] [Abstract][Full Text] [Related]
6. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture. Vadeboncoeur C; Thibault L; Neron S; Halvorson H; Hamilton IR J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174 [TBL] [Abstract][Full Text] [Related]
7. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius. Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. Ye JJ; Reizer J; Cui X; Saier MH J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482 [TBL] [Abstract][Full Text] [Related]
9. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Hamilton IR; St Martin EJ Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753 [TBL] [Abstract][Full Text] [Related]
10. Identification and properties of distinct sucrose and glucose phosphotransferase enzyme II activities in Streptococcus mutans 6715g. Jacobson GR; Mimura CS; Scott PJ; Thompson PW Infect Immun; 1984 Dec; 46(3):854-6. PubMed ID: 6500714 [TBL] [Abstract][Full Text] [Related]
11. Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate: sugar phosphotransferase system by glucose. Hamilton IR; Gauthier L; Desjardins B; Vadeboncoeur C J Bacteriol; 1989 Jun; 171(6):2942-8. PubMed ID: 2722738 [TBL] [Abstract][Full Text] [Related]
12. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans Ingbritt grown in continuous culture. Ellwood DC; Phipps PJ; Hamilton IR Infect Immun; 1979 Feb; 23(2):224-31. PubMed ID: 33901 [TBL] [Abstract][Full Text] [Related]
13. Construction of scrA::lacZ gene fusions to investigate regulation of the sucrose PTS of Streptococcus mutans. Sato Y; Yamamoto Y; Suzuki R; Kizaki H; Kuramitsu HK FEMS Microbiol Lett; 1991 Apr; 63(2-3):339-45. PubMed ID: 1905660 [TBL] [Abstract][Full Text] [Related]
14. Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in five serotypes of Streptococcus mutans. Slee AM; Tanzer JM Infect Immun; 1979 Nov; 26(2):783-6. PubMed ID: 546796 [TBL] [Abstract][Full Text] [Related]
15. Repeated DNA sequence involved in mutations affecting transport of sucrose into Streptococcus mutans V403 via the phosphoenolpyruvate phosphotransferase system. Macrina FL; Jones KR; Alpert CA; Chassy BM; Michalek SM Infect Immun; 1991 Apr; 59(4):1535-43. PubMed ID: 2004831 [TBL] [Abstract][Full Text] [Related]
16. Effect of nutritional constraints on the biosynthesis of the components of the phosphoenolpyruvate: sugar phosphotransferase system in a fresh isolate of Streptococcus mutans. Rodrigue L; Lacoste L; Trahan L; Vadeboncoeur C Infect Immun; 1988 Feb; 56(2):518-22. PubMed ID: 3338847 [TBL] [Abstract][Full Text] [Related]
17. Phosphoenolpyruvate-dependent phosphorylation of sucrose by Clostridium tyrobutyricum ZJU 8235: evidence for the phosphotransferase transport system. Jiang L; Cai J; Wang J; Liang S; Xu Z; Yang ST Bioresour Technol; 2010 Jan; 101(1):304-9. PubMed ID: 19726178 [TBL] [Abstract][Full Text] [Related]
18. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5. Liberman ES; Bleiweis AS Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606 [TBL] [Abstract][Full Text] [Related]
19. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. Ajdić D; Pham VT J Bacteriol; 2007 Jul; 189(14):5049-59. PubMed ID: 17496079 [TBL] [Abstract][Full Text] [Related]
20. Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Poolman B; Knol J; Mollet B; Nieuwenhuis B; Sulter G Proc Natl Acad Sci U S A; 1995 Jan; 92(3):778-82. PubMed ID: 7846050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]