These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 3417351)
21. ATP-dependent protein kinase activities in the oral pathogen Streptococcus mutans. Mimura CS; Poy F; Jacobson GR J Cell Biochem; 1987 Mar; 33(3):161-71. PubMed ID: 3571340 [TBL] [Abstract][Full Text] [Related]
22. Emergence of multiple xylitol-resistant (fructose PTS-) mutants from human isolates of mutans streptococci during growth on dietary sugars in the presence of xylitol. Trahan L; Bourgeau G; Breton R J Dent Res; 1996 Nov; 75(11):1892-900. PubMed ID: 9003237 [TBL] [Abstract][Full Text] [Related]
23. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. Simoni RD; Roseman S; Saier MH J Biol Chem; 1976 Nov; 251(21):6584-97. PubMed ID: 789368 [TBL] [Abstract][Full Text] [Related]
24. A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. Ajdic D; Chen Z Mol Oral Microbiol; 2013 Apr; 28(2):114-28. PubMed ID: 23193985 [TBL] [Abstract][Full Text] [Related]
25. Uptake and metabolism of sucrose by Streptococcus lactis. Thompson J; Chassy BM J Bacteriol; 1981 Aug; 147(2):543-51. PubMed ID: 6267012 [TBL] [Abstract][Full Text] [Related]
26. Vesicles prepared from Streptococcus mutans demonstrate the presence of a second glucose transport system. Buckley ND; Hamilton IR Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2639-48. PubMed ID: 8000534 [TBL] [Abstract][Full Text] [Related]
27. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. Vadeboncoeur C; Pelletier M FEMS Microbiol Rev; 1997 Feb; 19(3):187-207. PubMed ID: 9050218 [TBL] [Abstract][Full Text] [Related]
28. Resolution of the phosphotransferase enzymes of Streptococcus mutans: purification and preliminary characterization of a heat-stable phosphocarrier protein. Mimura CS; Eisenberg LB; Jacobson GR Infect Immun; 1984 Jun; 44(3):708-15. PubMed ID: 6373616 [TBL] [Abstract][Full Text] [Related]
29. Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr. Ye JJ; Saier MH J Bacteriol; 1996 Jun; 178(12):3557-63. PubMed ID: 8655554 [TBL] [Abstract][Full Text] [Related]
30. Diversity of Streptococcus salivarius ptsH mutants that can be isolated in the presence of 2-deoxyglucose and galactose and characterization of two mutants synthesizing reduced levels of HPr, a phosphocarrier of the phosphoenolpyruvate:sugar phosphotransferase system. Thomas S; Brochu D; Vadeboncoeur C J Bacteriol; 2001 Sep; 183(17):5145-54. PubMed ID: 11489868 [TBL] [Abstract][Full Text] [Related]
32. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis. Thompson J; Chassy BM J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204 [TBL] [Abstract][Full Text] [Related]
33. Sucrose transport by Streptococcus mutans. Evidence for multiple transport systems. Slee AM; Tanzer JM Biochim Biophys Acta; 1982 Nov; 692(3):415-24. PubMed ID: 7171603 [TBL] [Abstract][Full Text] [Related]
34. Identification of a site in the phosphocarrier protein, HPr, which influences its interactions with sugar permeases of the bacterial phosphotransferase system: kinetic analyses employing site-specific mutants. Koch S; Sutrina SL; Wu LF; Reizer J; Schnetz K; Rak B; Saier MH J Bacteriol; 1996 Feb; 178(4):1126-33. PubMed ID: 8576048 [TBL] [Abstract][Full Text] [Related]
35. The presence of two forms of the phosphocarrier protein HPr of the phosphoenolpyruvate:sugar phosphotransferase system in streptococci. Robitaille D; Gauthier L; Vadeboncoeur C Biochimie; 1991 May; 73(5):573-81. PubMed ID: 1764502 [TBL] [Abstract][Full Text] [Related]
36. Characterization of a phosphoenolpyruvate-dependent sucrose phosphotransferase system in Streptococcus mutans. St Martin EJ; Wittenberger CL Infect Immun; 1979 Jun; 24(3):865-8. PubMed ID: 468378 [TBL] [Abstract][Full Text] [Related]
37. Surface location of HPr, a phosphocarrier of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus suis. Dubreuil JD; Jacques M; Brochu D; Frenette M; Vadeboncoeur C Microbiology (Reading); 1996 Apr; 142 ( Pt 4)():837-843. PubMed ID: 8936310 [TBL] [Abstract][Full Text] [Related]
38. Carbohydrate uptake in the oral pathogen Streptococcus mutans: mechanisms and regulation by protein phosphorylation. Jacobson GR; Lodge J; Poy F Biochimie; 1989; 71(9-10):997-1004. PubMed ID: 2557096 [TBL] [Abstract][Full Text] [Related]
39. Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system. Cvitkovitch DG; Boyd DA; Hamilton IR J Bacteriol; 1995 Oct; 177(19):5704-6. PubMed ID: 7559362 [TBL] [Abstract][Full Text] [Related]
40. Phenotypic consequences resulting from a methionine-to-valine substitution at position 48 in the HPr protein of Streptococcus salivarius. Plamondon P; Brochu D; Thomas S; Fradette J; Gauthier L; Vaillancourt K; Buckley N; Frenette M; Vadeboncoeur C J Bacteriol; 1999 Nov; 181(22):6914-21. PubMed ID: 10559156 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]