These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 3417351)
41. Evidence for presence of a xylitol phosphotransferase system in Streptococcus mutans OMZ 176. Assev S; Rölla G Acta Pathol Microbiol Immunol Scand B; 1984 Apr; 92(2):89-92. PubMed ID: 6730972 [TBL] [Abstract][Full Text] [Related]
42. Regulation of sugar uptake via the multiple sugar metabolism operon by the phosphoenolpyruvate-dependent sugar phosphotransferase transport system of Streptococcus mutans. Cvitkovitch DG; Boyd DA; Hamilton IR Dev Biol Stand; 1995; 85():351-6. PubMed ID: 8586201 [No Abstract] [Full Text] [Related]
43. Glucose phosphoenolpyruvate-dependent phosphotransferase system of Streptococcus mutans GS5 studied by using cell-free extracts. Liberman ES; Bleiweis AS Infect Immun; 1984 May; 44(2):486-92. PubMed ID: 6715047 [TBL] [Abstract][Full Text] [Related]
44. Phosphoproteins and the phosphoenolpyruvate:sugar phosphotransferase system of Streptococcus salivarius. Detection of two different ATP-dependent phosphorylations of the phosphocarrier protein HPr. Waygood EB; Mattoo RL; Erickson E; Vadeboncoeur C Can J Microbiol; 1986 Apr; 32(4):310-8. PubMed ID: 3719456 [TBL] [Abstract][Full Text] [Related]
45. Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria. Marsh PD; Keevil CW; McDermid AS; Williamson MI; Ellwood DC Arch Oral Biol; 1983; 28(3):233-40. PubMed ID: 6574734 [TBL] [Abstract][Full Text] [Related]
46. Sugar transport by the bacterial phosphotransferase system. Isolation and characterization of a glucose-specific phosphocarrier protein (IIIGlc) from Salmonella typhimurium. Meadow ND; Roseman S J Biol Chem; 1982 Dec; 257(23):14526-37. PubMed ID: 6754734 [TBL] [Abstract][Full Text] [Related]
47. Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptococcus mutans. Boyd DA; Cvitkovitch DG; Hamilton IR Infect Immun; 1994 Apr; 62(4):1156-65. PubMed ID: 8132321 [TBL] [Abstract][Full Text] [Related]
48. Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. Sato Y; Poy F; Jacobson GR; Kuramitsu HK J Bacteriol; 1989 Jan; 171(1):263-71. PubMed ID: 2536656 [TBL] [Abstract][Full Text] [Related]
49. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms. Keevil CW; Williamson MI; Marsh PD; Ellwood DC Arch Oral Biol; 1984; 29(11):871-8. PubMed ID: 6097204 [TBL] [Abstract][Full Text] [Related]
50. Cross Talk among Transporters of the Phosphoenolpyruvate-Dependent Phosphotransferase System in Bacillus subtilis. Morabbi Heravi K; Altenbuchner J J Bacteriol; 2018 Oct; 200(19):. PubMed ID: 30038046 [TBL] [Abstract][Full Text] [Related]
51. Role of the phosphoenolpyruvate-dependent glucose phosphotransferase system of Streptococcus mutans GS5 in the regulation of lactose uptake. Liberman ES; Bleiweis AS Infect Immun; 1984 Feb; 43(2):536-42. PubMed ID: 6420344 [TBL] [Abstract][Full Text] [Related]
52. Sorbitol transport by Streptococcus sanguis 160. Svensater G; Hamilton IR Oral Microbiol Immunol; 1991 Jun; 6(3):160-8. PubMed ID: 1945499 [TBL] [Abstract][Full Text] [Related]
53. Effect of growth rate and pH on intracellular levels and activities of the components of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus mutans Ingbritt. Vadeboncoeur C; St Martin S; Brochu D; Hamilton IR Infect Immun; 1991 Mar; 59(3):900-6. PubMed ID: 1997439 [TBL] [Abstract][Full Text] [Related]
54. Protein:Protein interactions in the cytoplasmic membrane apparently influencing sugar transport and phosphorylation activities of the e. coli phosphotransferase system. Aboulwafa M; Zhang Z; Saier MH PLoS One; 2019; 14(11):e0219332. PubMed ID: 31751341 [TBL] [Abstract][Full Text] [Related]
55. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by enzyme I of Salmonella typhimurium. Weigel N; Kukuruzinska MA; Nakazawa A; Waygood EB; Roseman S J Biol Chem; 1982 Dec; 257(23):14477-91. PubMed ID: 6754730 [TBL] [Abstract][Full Text] [Related]
56. Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1. Homer KA; Patel R; Beighton D Infect Immun; 1993 Jan; 61(1):295-302. PubMed ID: 8418050 [TBL] [Abstract][Full Text] [Related]
57. Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose. Thompson J; Chassy BM J Bacteriol; 1983 May; 154(2):819-30. PubMed ID: 6404888 [TBL] [Abstract][Full Text] [Related]
58. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system. Abranches J; Chen YY; Burne RA Appl Environ Microbiol; 2003 Aug; 69(8):4760-9. PubMed ID: 12902269 [TBL] [Abstract][Full Text] [Related]
59. Coordinated Regulation of the EII Zeng L; Chakraborty B; Farivar T; Burne RA Appl Environ Microbiol; 2017 Nov; 83(21):. PubMed ID: 28821551 [TBL] [Abstract][Full Text] [Related]
60. Quantitative determination of the intracellular concentration of the various forms of HPr, a phosphocarrier protein of the phosphoenolpyruvate: sugar phosphotransferase system in growing cells of oral streptococci. Vadeboncoeur C; Brochu D; Reizer J Anal Biochem; 1991 Jul; 196(1):24-30. PubMed ID: 1716075 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]